timescales.sim.sim_spikes_synaptic
timescales.sim.sim_spikes_synaptic¶
- timescales.sim.sim_spikes_synaptic(n_seconds, fs, tau, mu=None, refract=None, isi=None, var_noise=None)[source]¶
Simulate a spiking autocorrelation as a synaptic kernel.
- Parameters
- n_secondsfloat
Length of the signal, in seconds.
- fsfloat
Sampling rate, in hz.
- taufloat
Timescale, in seconds.
- mufloat, optional, default: None
Mean of the isi exponential distribuion. Only used if isi is None.
- refractint, optional, default: None
Minimum distances between spikes (i.e. refactory period).
- isi1d array, optional, default: None
Interspike intervals to randomly sample from.
- var_noisefloat, optional, default: None
Variance of gaussian noise to be added to spike probabilities. Larger values, approaching 1, will produce smaller spectral exponents.
- return_sumbool, optional, default: True
Returns sum of neurons if True. If False, a 2d binary array is returned.
- Returns
- spikes1d
Spike counts.