timescales.sim.sim_branching
timescales.sim.sim_branching¶
- timescales.sim.sim_branching(n_seconds, fs, tau, lambda_h, lambda_a=None, mean=None, variance=None)[source]¶
Simulate a branching Poisson process.
- Parameters
- n_secondsfloat
Length of the signal, in seconds.
- fsfloat
Sampling rate, in hz.
- taufloat
Timescale, in seconds. Determines branching parameter, m.
- lambda_hfloat
Poisson lambda constant.
- lamda_afloat
Initial Poisson lambda weight. If None, default to (tau * fs) * lambda_h.
- meanfloat, optional, default: None
Mean to normalize signal to.
- variancefloat, optional, default: None
Variance to normalize signal to.
- Returns
- sig1d array
Timseries containing timescale process.
Notes
Simplified implentation based on MR. Estimator: