timescales.sim.sim_spikes_prob
timescales.sim.sim_spikes_prob¶
- timescales.sim.sim_spikes_prob(n_seconds, fs, kernel, isi=None, mu=None, refract=None, var_noise=None)[source]¶
Simulate spiking probability.
- Parameters
- n_secondsfloat
Length of the signal, in seconds.
- fsfloat
Sampling rate, in hz.
- kernel1d or 2d array
Synaptic kernel to convolve with Poisson.
- n_neuronsint, optional, default: 100
Number of neurons to simulate.
- isi1d array, optional, default: None
Interspike intervals to randomly sample from.
- mufloat, optional, default: None
Mean of the isi exponential distribuion. Only used if isi is None.
- refractint, optional, default: None
Minimum distances between spikes (i.e. refactory period).
- var_noisefloat, optional, default: 0.
Variance of gaussian noise to be added to spike probabilities. Larger values, approaching 1, will produce smaller spectral exponents.
- Returns
- probs2d array, optional
Probablility of spiking at each sample.