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Introduction

Over the past decades, tens of thousands of neuroimaging studies have cre-
ated an extensive corpus pairing natural language descriptions with brain ac-
tivation coordinates, forming a rich multimodal dataset.

Recent advances in generative and predictive models [1, 2, 3, 4] now enable
leveraging this vast knowledge base to fill scientific gaps and accelerate sci-
entific discovery. Alongside advances in vision-language models ([5]), these
methods may be adaptated for neuroscience use cases. However, most state-
of-the-art vision-language models require billions of parameters and / or ex-
tensive computational resources, limiting their accessibility and practicality.

In this work, we introduce Neurovim, a vision-language model that aligns neu-
roscientific text with coordinate-based brain activation maps. The model sup-
ports natural language queries, retrieves literature, and generates predicted
activation patterns, thereby unifying text, brain representations, and large-
scale scientific knowledge within a single architecture.

Methods

We trained Neurovim on a novel dataset of 30,000 fMRI-based text-brain
pairs extracted from the literature, alongside 200,000 published papers with-
out coordinates (meaning text-only).
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Figure 1. Neurovim Architecture

Neuro Autoncoder: We trained a sequential autoencoder with three layers
using images only. Latent space was set to be /68-dimensional.

Text Encoder: We finetuned SPECTERZ2 with 200k neuroscience articles to
teach it domain-specific semantics.

Projection head: We trained a projection head to align latent text and brain
embeddings using mean-squared error and InfoNCE loss.
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Encoding and reconstructing canonical fMRI networks

We evaluated Neurovim’s ability to encode and reconstruct canonical fMR|
networks derived from ten widely used functional atlases. Although Neu-
rovim was trained exclusively on task-evoked activation maps rather than at-
las templates, its reconstructions achieved higher structural similarity and Dice
scores, and lower mean squared error, compared to the Dictionary of Func-
tional Modes (DiFuMo) reference baseline.
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Figure 2. a) Reconstruction metrics when encoding and reconstructing fMRI networks from
diverse atlas. b) Visual examples of the original binarized Shrier networks alongside the
reconstruction using the DiFuMo basis and our autoencoder.

Ranking and retrieval capacity compared to larger
models

Ranking and retrieval assess how well the model aligns brain maps and text. It
measures whether the correct match appears among the top-ranked results,
with higher recall reflecting stronger cross-modal alignment.

Table 1. Recall Performance

Metric Neurovim NeuroConText

Mean Std Mean Std
Recall@20 0.2071 0.0106 0.2172 0.0093
Recall@200 0.5756 0.0092 0.5829 0.0140
Mix-Match 0.8418 0.0034 0.8414 0.0080

Neurovim matches NeuroConlext in ranking and retrieval performance while
using a 100M-parameter fine-tuned SPECTER?2 backbone, compared to Neu-
roConlext’'s 7B-parameter language model [6].
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Text — brain

Despite being trained on full title-abstract pairs, Neurovim effectively de-
codes short-form text queries into meaningful neuroactivation patterns.
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Figure 3. Qualitative Decoding Examples
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When comparing the decoded activation maps with NeuroQuery—a
coordinate-based meta-analytic model that predicts brain activations from
text—we observe that Neurovim’s reconstructions show higher spatial align-
ment and similarity to expected activation patterns.
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Figure 4. Neurovim and NeuroQuery Decoding Performance

Current and future work

Explore brain — text: automatic labeling of unlabeled images and
interpretation of brain maps.

= Extend text — brain decoding to temporal domains, investigating the
feasibility of zero-shot text — neurovideo generation.

= and more!
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Moderate Signal

- Neural timescales capture the stochasticity or relative instability of a neural signal over time and are thought to reflect [ periodic + aperiodic ]
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Working Memory & Aperiodic Activity WM precision decreases with load Session 1: aperiodic activity & fm-theta
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Motivation Overview of Design and Approach E:l Balance-Specific Development

Electrical neural signals consist of mixed periodic
100% glut : 0% GABA

(rhythmic) and aperiodic (non-rhythmic) spectral SAMPLE SIZE
components that have been shown to reflect n= 20 hiPSQ cultures
synchronized firing in cortical networks, and may serve as (glutamatergic, GABAergic, ~10% astrocytes)
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Computing the STTC requires defining a At such that (1) T is the proportion of time within At of all spikes in
a spike train and (2) P is the proportion of spikes in one spike train occurring within £At of spikes in another
spike train. Coefficient values range from -1 to 1 (-1 is anticorrelated, O is no correlation, 1 is highly correlated).
We computed STTC with At =5 ms.

Power Spectrum
Full Model Fit
mm Aperiodic Fit

A STTC mean / week

STTC Mean broadly indexes overall
network connectivity strength

A STTC variance / week

Increased glutamatergic

B presence drives greater
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. o (Donoghue et al, 2020) i
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Neural Signatures of Sleep Deprivation in Aperiodic EEG Activity

Elvis Smith, Elizabeth Kaplan, Bradley Voytek

Department of Cognitive Science, University of California San Diego

e EEG signals are composed of both periodic (oscillatory) and aperiodic (non-
oscillatory) features. Aperiodic features have been shown to influence the
excitatory-inhibitory (E-l) balance of neural processes (Weist et al, 2023).

e Sleep loss affects this E-| balance by increasing inhibition rate. Previous work
describes aperiodic changes across sleep stages and after sleep deprivation,
this change can result in neurological impacts such as worsened attention and
memory.

e |n the present investigation, we analyze an open resting-state EEG dataset
with two sessions per subject: normal sleep (NS) vs. 24-h sleep deprivation
(SD) - OpenNeuro ds004902 (Xiang, Fan, Bai, Lv, Lei; v1.0.8).

e Using a spectral parameterization model (SpecParam), we extract parameters,
aperiodic offset and aperiodic exponent, per channel and compare NS vs SD
within-subject.

e Results show a significant increase in aperiodic offset after SD in 5 different
channels, with no significant change in aperiodic exponent. This is consistent
with the expected disruption in E-| balance after SD.

e Resting-state EEG, N=71 (34 F, 37 M), ages 17-23 (20 + 1.44); two sessions:
normal sleep (NS) and sleep deprivation (SD) (24 h monitored wakefulness
with not rigorous physical activity).

e Subject metadata also includes condition order and behavioral/mood metrics
for future analysis.

e Between sleep conditions, five channels showed significant aperiodic
offset increases following sleep deprivation. These channels are
clustered primarily in frontal and parietal regions.

e The offset shift reflects enhanced background neural activity across all
frequencies, consistent with increased aperiodic activity following sleep
loss.

SD Reveals Difference in Aperiodic Offset

Preprocessing

e DC offset adjustment, notch, and high/low pass filtering, muscle artifact
removal, and ICA for blink removal.

e Power Spectral Density (PSD) plots were generated per channel to visually
identify and remove channels outside standard spectral ranges.

Spectral Parameterization

e SpecParam was used to extract key aspects of aperiodic activity found in EEG
signals. The two parameters include aperiodic exponent, which quantifies the
1/f-like background activity found in neural signals and aperiodic offset, which
quantifies the vertical shift of the entire power spectrum across all frequencies.

| | | | —— Original Spectrum
~Full Model Fit
- = Aperiodic Fit

e Parameters were calculated for =9

each channel across both
conditions for all subjects. 20y
e Paired t-tests were conducted on
within-subject differences (SD -
NS) for aperiodic exponent and
offset parameters across all
channels. Bonferroni correction
was applied to account for testing o
two parameters per channel
(corrected a = 0.025).
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Channels With Highest Proportion of Offset Change Example Aperiodic Power Shift After SD

C. Example: F2
Aperiodic Offset Shift

A Offset: +0.196
A Exponent: +0.041

Spatial Map of Significant Channels

B. Significant Channels (n=5)
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Figure 4C. Example power shift of
aperiodic component across
conditions

Figure 4A. Topo map of channels
showing spatial distribution of

significance

Figure 4B. Channels significance
and it proportion of offset
difference

e Our results are in agreement with work from “Impact of Sleep Deprivation On
Aperiodic Activity: A Resting-State EEG Study” (Bai, Hu, Julich, Le). Sleep
deprivation produces significant increases in aperiodic EEG activity across
frontal and parietal regions, predominantly affecting lower frequency bands
(delta/theta).

e These changes reflect elevated background neural activity (1/f-like) consistent
with reduced E-| balance as a result of SD. An increased aperiodic power
increases inhibition rate in which can affect neural communication.

e Testing aperiodic components against spectral power across conditions allows
for simple and clear effect size measuring that affirm similar findings.

e The spatial pattern of significantly affected channel aligns with previous
work showing frontal sensitivity to sleep deprivation (Bai et al., 2024; Mu &
Li, 2013).

Frequency Specific Aperiodic Shift

e Band-specific analysis reveals these offset changes differentially affect
frequency bands.

e Due to offset and exponents strong collinearity, vertical offset shift or
exponent steepness can both describe aperiodic power shifts in SD.

Mean Power Spectral Density: Normal Sleep vs Sleep Deprivation
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Within-Subject Aperiodic Power Increases Following Sleep Deprivation
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Figure 7. Within-subject differences between conditions and percentage of aperiodic power change, sampled at
5 Hz.

Future Directions

e Relate findings to studies that examine how quickly aperiodic patterns
normalize with sleep recovery, and do individual differences that rate.

e EXxplore relationships between aperiodic activity and sleep-specific
oscillations (K-complexes, sleep spindles) to understand mechanisms of
memory consolidation.

e EXxplore whether aperiodic biomarkers can predict susceptibility to sleep-
related cognitive disorders or be an early detection method.

Acknowledgements

References:

e Bai, D, Hu, J., Julich, S., & Lei, X. (2024). Impact of sleep deprivation on aperiodic activity: a resting-state EEG study. Journal of
Neurophysiology, 132(5), 1577-1588

e West, T. O,, Berthouze, L., Halliday, D. M., Litvak, V., Sharott, A., Magill, P. J., & Farmer, S. F. (2023). The aperiodic exponent of
subthalamic field potentials reflects excitation/inhibition balance in Parkinsonism. eLife, 12, e82467.

e Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A. H., Wallis, J. D., Knight, R. T.,
Shestyuk, A., & Voytek, B. (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature

Neuroscience, 23, 1655-1665.
e Wu,J., Zhou, Q, Li, J. et al. Decreased resting-state alpha-band activation and functional connectivity after sleep deprivation. Sci Rep

11, 484 (2021).

e Contacts: PDF of poster:

o Elvis Smith - easO0@ucsd.edu
o Elizabeth Kaplin - likaplan@ucsd.edu

% Sponsored by Voytek Lab at the University of California, San Diego



mailto:eas00@ucsd.edu
mailto:likaplan@ucsd.edu

Aperiodic activity as an EEG biomarker for sertraline response: Applications and limitations VOYTEK

Indrani Vairagare!, Sydney E. Smith23, Angela Chapman4, Bradley Voytek12.5.6 UCSan Diego

1Dept. of Cognitive Sci., 2Neurosciences Graduate Program, 3Wu Tsai Institute, Yale University, New Haven, CT, USA, 4Psychological and Brain Sciences, University of lowa, IA, USA, Halicio§lu Data Science Institute, University of California, San Diego, La Jolla, CA, USA, ¢Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA,

4 h ~ N\ ( )
BACKGROUND 8 WEEKS OF SERTRALINE TREATMENT DECREASES APERIODIC EXPONENT APERIODIC EXPONENT IS NEITHER EFFECTIVE AS A
- Major Depressive Disorder (MDD) affects approx 1in 12 people in the US Group PSD and Aperiodic Fit - SER (Baseline vs End Phase 1) BIOLOGICAL NOR AS A PREDICTIVE INDICATOR
- Commonly treated with Selective Serotonin Re-uptake Inhibitors (SSRIs) . Paired Aperiodic Exponent: SER
o o -11 o .
like Sertraline 10 SN SERTRALINE (SER) :
_ o . L B Paired t-test " Di ic Indi
- Response to SERT or other mediations is variable, which needs biological ‘~ / c No of subjects: 94 ‘§ agnostic ndicators
. . - . . : = R Q ° S - - Exhaustive
g . & | z 1
indicators to guwe. tre.atment. hese mo! |cajto.rs c.an vary with §ever|ty, 3 A P §- offact size- 0.351 £ ) egression
response to medication and mechanistic indicators, possibly o 10-12 - > s 4 S ,,
: - : : — < v Statistic SER Value £ | | - Formula used:
identifiable through EEG, though so far, has been inconclusive - [ 0 w0 score 17 ~
S S T 5.324 o _,_ —EE—
- Aperiodic component (broadband 1/f) overlooked by traditional metrics,and | | — Baseline [ ar o 1 erponent + offset +
: : alpha_amp + sex +
not been explored for antidepressant response to sertraline Jo-13] — EndPhase 1 qé. p-value | 6.863x107 Averiodic’ AperiodicT  Abna, o e agpe,, p
, L S - iodi Cl95% | [0.06, 0.12] t ffset amplitude (M=0, F=1)
- Data has 198 resting state EEG from patients in a clinical trial (EMBARC S E:Ze::aeszple:g:'r‘;odic conend a5+ SremE o A ~ No. Of observations:
Establishing Moderators and Biosignatures of Antidepressant Response in . BF10 19990.0 Predictor pvalue 95%Cl Interpretation 198
Clinical Ca re) fOr Sertraline over 8 WeekS 100 101 Baseline End Phase 1 Power 0.923 ::rio:ic (E)xﬁponent z:)sj ;26269 ,30:5]] ;m:" negative‘ -trendﬁ(non(—.sigr.\fi.fican)t) 2 =0.144
. . Frequency (HZ) riodic Offset : .66 , 3. oderate positive effect (significant B
- 94 treated W|th Sertl‘allne Alpha Amplitud 0.055 [-1.91, 0.02] Small negative trend (marginal) p(fSt) =0.055
Group PSD and Aperiodic Fit - PLA (Baseline vs End Phase 1) 4 4 s: (:I_:F_:) 0729 | 12.30, 1.61] | N gl'g'blg X
: | . Paired Aperiodic Exponent: PLA ST e st
104 treated with Placebo - P P PLACEBO (PLA) Age 0.455 [-0.05,0.10] Negligible
- We examined the utility of periodic and aperiodic components from the EEGs 1011 < 2.0 Paired t-test
as: \;‘\\ -:IC-; No of Subjects: 104 Predictive indicators
. . e g : : . - . . 1.0- :
- Biological indicators of MDD severity, z S 1.5 Effect size: 0.114 2 :2:; z:s, t:res from
- . e ot - o
- Predictive indicators of sertraline treatment response, and & 10-12 S Statistic PLA Value 2 05- regression as well as
TUT . o ] ¢ . .
- Mechanistic indicators of neural changes due to sertraline = = 1.0 ! 178 . chronicity , logistic
. . . e . . O o df 104 c - regression
- While the outcome of biological and predictive indicators were inconclusive, ] Baseline = =
. . (o . . . (o . . . . . . End Ph 1 8 p-value 0.096 = —0.5 - - Formula used:
we identified a highly significant reduction in aperiodic exponent in patients 10-134 — -ndrhase ® o5 CI95% | [0.05, 0.0 8 response ~
. . . . . . Baseline Aperiodic : o
who received sertraline, a change not observed in patients who received 1 ——— End Phase 1 Aperiodic Cohen-d|  0.114 Rk I | | | | mean_offset +
plaCebO BF10 0.419 Non-Chronic Male Treatment Offset Exponent Alpha MddChronluty +
. | o o 10° 101 Baseline End Phase 1 Power 0.013 mean_exponent +
- provides a foundation for broader application of aperiodic spectral measures Frequency (Hz) — vaton | 95% Gt for O | irerstaton mean_alpha_amp +
l NI ' MDD Chronicity (T Non-chronic) | 0.188 [0.27-1.29]  Lower odds of response (non-sig.)
L for other depression treatments and clinical populations VAW fmin=0.5, fmax=55, peak_width_limits=[1, 8], min_peak_height=0.05, max_n_peaks=6,  Psds are calculated with 2 second epoch, 64 channels each subject y Sex (T M) 50|55 -255 | tgnt oress i o for mles b =
Aperiodic Offset 0.933 [0.49-1.94]  No effect - No. Of observations:
é N\ ( N ( ) Aperiodic Exponent 0.866 [0.48-1.87]  No effect 198
What is the Aperiodic DATASET WEEK 1 VS WEEK 8 TOPOMAPS DISPLAYING EXPONENTS TOPOMAPS DISPLAYING EXPONENT CHANGES IN T T e - Pseudor2=0037 |
PATIENTS TREATED WITH SERTRALINE VS PLACEBO
? | 4 A
component of EEG? Resting stage EEG data was collected from BEFORE TREATMENT NETER TREATMENT
e 198 patients diagnosed with MDD before 1r1 Exponent: SER 21 Exponent: SER DISCUSSION AND FUTURE DIRECTIONS
TN and after a double blind treatment of = I exp
either sertraline or placebo over 8 weeks - Analyses relating the observed change in exponent to therapeutic
outcome is ongoing.
Pre EEG 198 subjects - By focusing on the aperiodic exponent, a parameter rarely emphasized
| in standard neurophysiological analyses, our findings explore its
Pre freatment: Bageline . - o .
B T I _ 1 " potential utility (or lack thereof) as a predictive biomarker and
oolFrequency Sertraline Placebo ® T .
94 subjects 94 subjects il » N mechanistic indicator of treatment efficacy.
Spectral parameterization °
(specparam, formerly fooof) is a fast, 3 Future Directions:

. : : Sertraline Placebo [ ) : : : S ST
efficient, and physiologically- 94 subjects 94 subjects o » This work provides a foundation for !oroader application o.f z?perlodm
informed tool to parameterize neural v L spectral measures for other depression treatments and clinical
power spectra. Post-treatent: f populations.

Post EEG 198 subjects - Look at electrode clusters that change the most during sertraline
More on Specparam - treatment for either both as a diagnostic indicator or as a predictive
Hnkto GituD — Perrpie Sttt indicator at baseline.
S ral 1 - Using the cluster analysis to see what features at what part of the brain

Donoghue, T., Haller, M., Peterson, E.J. et al. :::::?s’::mw :;:::T;L/Aim or Alfcan Ame: T6.4%; Ofer: 121 10 1.0 1S USGfUl to either dlag NOoSe Or prediCt.
Parameterizing neural power spectra into periodic and HDRS-17 Wesko (mean = SD) ea5edas
aperiodic components. Nat Neurosci 23, 1655—-1665 HDRS-17 Weeks (mean = SD) 10104693
(2020). https.//doi.org/10.1038/s41593-020-00744-x (ST AT 50' 107 ,' 46.728% \ - v,
\- J/ J J () voytekresearch ) indraniii [$~] ivairagare@ucsd.edu

\ 7 I

Vi




