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From words to brain maps: An efficient and versatile
vision-language model for neuroscience.

Introduction
Over the past decades, tens of thousands of neuroimaging studies have cre-
ated an extensive corpus pairing natural language descriptions with brain ac-
tivation coordinates, forming a rich multimodal dataset.

Recent advances in generative and predictive models [1, 2, 3, 4] now enable
leveraging this vast knowledge base to fill scientific gaps and accelerate sci-
entific discovery. Alongside advances in vision-language models ([5]), these
methods may be adaptated for neuroscience use cases. However, most state-
of-the-art vision-language models require billions of parameters and / or ex-
tensive computational resources, limiting their accessibility and practicality.

In this work, we introduce Neurovlm, a vision-language model that aligns neu-
roscientific text with coordinate-based brain activation maps. The model sup-
ports natural language queries, retrieves literature, and generates predicted
activation patterns, thereby unifying text, brain representations, and large-
scale scientific knowledge within a single architecture.

Methods
We trained Neurovlm on a novel dataset of 30,000 fMRI-based text-brain
pairs extracted from the literature, alongside 200,000 published papers with-
out coordinates (meaning text-only).

Figure 1. Neurovlm Architecture

Neuro Autoncoder: We trained a sequential autoencoder with three layers
using images only. Latent space was set to be 768-dimensional.
Text Encoder: We finetuned SPECTER2 with 200k neuroscience articles to
teach it domain-specific semantics.
Projection head: We trained a projection head to align latent text and brain
embeddings using mean-squared error and InfoNCE loss.

Encoding and reconstructing canonical fMRI networks
We evaluated Neurovlm’s ability to encode and reconstruct canonical fMRI
networks derived from ten widely used functional atlases. Although Neu-
rovlm was trained exclusively on task-evoked activation maps rather than at-
las templates, its reconstructions achieved higher structural similarity and Dice
scores, and lower mean squared error, compared to the Dictionary of Func-
tional Modes (DiFuMo) reference baseline.

Figure 2. a) Reconstruction metrics when encoding and reconstructing fMRI networks from
diverse atlas. b) Visual examples of the original binarized Shrier networks alongside the
reconstruction using the DiFuMo basis and our autoencoder.

Ranking and retrieval capacity compared to larger
models

Ranking and retrieval assess howwell the model aligns brain maps and text. It
measures whether the correct match appears among the top-ranked results,
with higher recall reflecting stronger cross-modal alignment.

Table 1. Recall Performance

Metric Neurovlm NeuroConText

Mean Std Mean Std

Recall@20 0.2071 0.0106 0.2172 0.0093
Recall@200 0.5756 0.0092 0.5829 0.0140
Mix-Match 0.8418 0.0034 0.8414 0.0080

Neurovlm matches NeuroConText in ranking and retrieval performance while
using a 100M-parameter fine-tuned SPECTER2 backbone, compared to Neu-
roConText’s 7B-parameter language model [6].

Text��→ brain
Despite being trained on full title–abstract pairs, Neurovlm effectively de-
codes short-form text queries into meaningful neuroactivation patterns.

Figure 3. Qualitative Decoding Examples

When comparing the decoded activation maps with NeuroQuery—a
coordinate-based meta-analytic model that predicts brain activations from
text—we observe that Neurovlm’s reconstructions show higher spatial align-
ment and similarity to expected activation patterns.

Figure 4. Neurovlm and NeuroQuery Decoding Performance

Current and future work

Explore brain → text: automatic labeling of unlabeled images and
interpretation of brain maps.
Extend text → brain decoding to temporal domains, investigating the
feasibility of zero-shot text → neurovideo generation.
and more!
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Electrophysiological brain activity in children is 
linked to Rett Syndrome (RTT) risk and correlates 
with visual and behavioral deficits.

EEG signals consist of mixed periodic and aperiodic components 
that have been shown to reflect synchronized firing in cortical networks, 
and may serve as putative indices of cortical excitation-inhibition (E:I) 
balance in healthy and disrupted neurodevelopment. 

Mecp2-/+ female mouse model shows cortical E:I 
imbanalance and can better recapitulate RTT.

Here we examined whether aperiodic 
electrophysiological signal features are correlated to
symptomatic changes in RTT girls and the
Mecp2-/+ female mouse model.

Gao et al., 2017

Roche et al., 2019

Clinical severity and motor deficits, but not visual defecits, correlate with
aperiodic exponent in Rett Syndrome occipital electrodes.

(Data sourced from Roche et al., 2019)
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Overview of participants and 
neural activity spectral parameterization

    initial specparam settings: 
fit range: (1, 14) 
peak width limits: (1, 12)
maximum number of peaks: 5 
minimum peak amplitude: 0
peak threshold: 2
aperiodic mode: ‘fixed’

EEG sourced from Roche et al. 2019
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Spectral parameterization reveals that aperiodic electrophysiological features may serve as a 
cross-scale biomarker for symptomatic changes in Rett Syndrome that may link cellular-level 

imbalances in cortical excitation-inhibition to clinically observable visual and motor dysfunction.

V1 tissue saved for
future sn-RNAseq

Impaired differentiation Impaired maturation

↓ Neuromodulators

SOM

PV

VIP

Impaired differentiation and maturation
is thought to underlie altered connectivity, 
and thus E/I imbalance in cortical circuits

Rett syndrome (RTT) is a neurological 
disorder caused by mutations in the x-linked gene 
encoding methyl-CpG-binding protein 2 (MeCP2).

Figure adapted from Ip et al., 2018



                              

                                      

              

           

          

 

    

 

       

               

               

             

                  

          

         

Introduction
- Neural timescales capture the stochasticity or relative instability of a neural signal over time and are thought to reflect 
the brain’s integration of external and internal stimuli1-2

- Timescales can be measured using the autocorrelation function, which provides an estimate of how long it takes for a 
signal to lose correlation with itself1=2

- Signals with a faster timescale have a steeper decay rate in the autocorrelation function

- Previous literature suggests that as age increases across typical development, power shifts from predominantly slower 
to relatively faster frequencies regarding both oscillatory and aperiodic activity3-9

- Given established research on typical neurodevelopmental changes in the periodic and aperiodic components of the 
power spectrum, we can make strong predictions regarding changes in the ACF that have yet to be tested

- Establishing typical neurological patterns of development allows exploratory investigation into neurodevelopmental 
disorders like ADHD, wherein these patterns may be altered

Results
- Power spectrum findings regarding developmental trajectories 
within the aperiodic exponent replicated

- All participants show a negative correlation between age and 
50-crossing values

- Linear regression of with age of the ACF-50 crossing regarding 
typical development shows a significant negative correlation, 
indicating faster timescales according to our hypotheses

- For ADHD participants however, the 50-crossing did not show 
a significant correlation with age. Additionally, there were no 
significant results between subtypes

- 50-crossing values are significantly influenced by  EO/EC 
condition

Methods
- EEG cross-sectional dataset (recorded using a 128-channel HydroCel GSN) 
of eyes-open/eyes-closed data from the Healthy Brain Network at the 
Child Mind Institute for participants (n=293) aged 5-23 years old

- Utilized an automatic preprocessing 
scheme involving automated channel 
rejection pipeline consisting of voltage 
thresholding, PSD thresholding, and 
established automated preprocessing 
pipeline PREP17

- Extracted and analyzed the PSDs and 
ACFs from the data

-TD and ADHD participants were 
age-matched using a nearest-neighbor 
based procedure

Hypotheses
- As age increases, the autocorrelation will have a steeper decay rate, 
indicating increased power in higher frequencies. The steeper decay 
rates are indicated by lower ACF 50-crossing values

-Due to incredibly mixed prior findings, we did not have concrete 
hypotheses regarding ADHD timescales and therefore conducted an 
exploratory analysis

Conclusions
- Various theories of ADHD:
 -Dynamic developmental behavioral theory 18

 -Executive dysfunction theory19-20

 -State regulation theory
 -Maturational delay theory: ADHD reflects the delay of, 
rather than a deviation from typical cortical development21-22

-ADHD participants, including both subtypes, seem to show 
weaker age-related declines in 50-crossing values

-As timescales are shaped by cortical microarchitecture, a lack 
of significant correlation of the 50-crossing with age in ADHD 
participants could lend support to maturational delay theory4

-Can further investigate support for other theories by exploring 
possible links between timescales findings and behavioral 
correlates
 -Digit span, WAIS excerpt
 - ACE: mobile cognitive control assessment battery 

(attention, working memory, goal management)
 -Temporal discounting task

More on ADHD
- ADHD is a common and highly heterogenous neurodevelopmental disorder that usually presents with impaired levels of 
inattention, disorganization, or hyperactivity/impulsivity10

- Previous literature indicates that across development ADHD shows elevated low frequency power compared to typically 
developing peers, especially in frontal channels11-14

- Further research suggests that the ADHD-Combined vs ADHD-Inattentive subtypes are distinct behavioral disorders, 
pointing to possible distinct developmental trajectories15-16

- Timescales, as metrics that combine periodic and aperiodic information and that are reflective of neural integration and 
segmentation, offer utility as a potential biomarker for demarcating these differing trajectories

Timescale changes across typical neurodevelopment and ADHD

A visualization of the ACF-50 crossing, 
which marks the point at which the 
autocorrelation function decays to 50% of 
its peak correlation with itself
The ACF is often interpreted as measuring 
the ‘memory’ of the signal

n = 293

faster timescales slower timescales faster timescales                      slower timescales

of all electrodes

n = 293
p < .001 ***
adj. r2 = 0.095

n = 103
ns
adj. r2 = 0.015

n = 190
p < .001 ***
adj. r2 = 0.123

n = 103
ns
adj. r2 = 0.010

n = 190
p =  .001 ***
adj. r2 = 0.155

n = 190
p =  .001 ***
adj. r2 = 0.155

n = 46
ns
adj. r2 = 0.002

n = 190
p < .001 ***
adj. r2 = 0.123

n = 46
ns
adj. r2 = 0.024

n = 190
p =  .001 ***
adj. r2 = 0.155

n = 43
ns
adj. r2 = 0.005

No significant effects, but possible emerging 
subtype differences

F(1, 174) = 3.19, p = 0.076

F(1, 408) = 
11.55, p < 
.001  → the 
50-crossing 
value is 
influenced 
by the 
condition

References: 1Wolff, A., Berberian, N., Golesorkhi, M., Gomez-Pilar, J., Zilio, F., & Northoff, G. (2022). Intrinsic neural timescales: temporal integration and segregation. Trends in Cognitive Sciences, 26(2), 159–173. https://doi.org/10.1016/j.tics.2021.11.007,2Cellier, D., Riddle, J., Hammonds, R., Frohlich, F., & Voytek, B. (2025). Aperiodic neural timescales in prefrontal cortex dilate with increased task abstraction. bioRxiv, 2025-04. 3Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A. H., Wallis, J. D., Knight, R. T., Shestyuk, A., & Voytek, B. (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience, 23(12), 1655–1665. https://doi.org/10.1038/s41593-020-00744-x, 4Gao, R., Van Den Brink, R. L., Pfeffer, T., & Voytek, B. (2020). Neuronal timescales are functionally dynamic and 
shaped by cortical microarchitecture. eLife, 9. https://doi.org/10.7554/elife.61277,5Cellier, D., Riddle, J., Petersen, I., & Hwang, K. (2021). The development of theta and alpha neural oscillations from ages 3 to 24 years. Developmental Cognitive Neuroscience, 50, 100969. https://doi.org/10.1016/j.dcn.2021.100969,6Schaworonkow, N., & Voytek, B. (2020). Longitudinal changes in aperiodic and periodic activity in electrophysiological recordings in the first seven months of life. Developmental Cognitive Neuroscience, 47, 100895. https://doi.org/10.1016/j.dcn.2020.100895,7Segalowitz, S. J., Santesso, D. L., & Jetha, M. K. (2010). Electrophysiological changes during adolescence: A review. Brain and Cognition, 72(1), 86–100. https://doi.org/10.1016/j.bandc.2009.10.003,8Stanyard, R., Mason, D., Ellis, C., Dickson, H., Short, R., Batalle, D., & Arichi, T. (2024). Aperiodic and 
Hurst EEG exponents across early human brain development: A systematic review. Developmental Cognitive Neuroscience, 68, 101402. https://doi.org/10.1016/j.dcn.2024.101402,9Ostlund, B., Donoghue, T., Anaya, B., Gunther, K. E., Karalunas, S. L., Voytek, B., & Pérez-Edgar, K. E. (2022). Spectral parameterization for studying neurodevelopment: How and why. Developmental Cognitive Neuroscience, 54, 101073. https://doi.org/10.1016/j.dcn.2022.101073,10Koutsoklenis, A., & Honkasilta, J. (2023). ADHD in the DSM-5-TR: What has changed and what has not. Frontiers in psychiatry, 13, 1064141. https://doi.org/10.3389/fpsyt.2022.1064141, 11Rudo-Hutt, A. S. (2014). Electroencephalography and externalizing behavior: A meta-analysis. Biological Psychology, 105, 1–19. https://doi.org/10.1016/j.biopsycho.2014.12.005,12Clarke, A. R., Barry, R. J., Johnstone, S. J., 
McCarthy, R., & Selikowitz, M. (2019). EEG development in Attention Deficit Hyperactivity Disorder: From child to adult. Clinical Neurophysiology, 130(8), 1256–1262. https://doi.org/10.1016/j.clinph.2019.05.001,13Clarke, A. R., Barry, R. J., & Johnstone, S. (2020). Resting state EEG power research in Attention-Deficit/Hyperactivity Disorder: A review update. Clinical Neurophysiology, 131(7), 1463–1479. https://doi.org/10.1016/j.clinph.2020.03.029,14Kamida, A., Shimabayashi, K., Oguri, M., Takamori, T., Ueda, N., Koyanagi, Y., Sannomiya, N., Nagira, H., Ikunishi, S., Hattori, Y., Sato, K., Fukuda, C., Hirooka, Y., & Maegaki, Y. (2016). EEG Power Spectrum Analysis in Children with ADHD. PubMed, 59(2), 169–173. https://pubmed.ncbi.nlm.nih.gov/15Milich, R., Balentine, A. C., & Lynam, D. R. (2001). ADHD combined type and ADHD predominantly inattentive type are 
distinct and unrelated disorders. Clinical psychology: science and practice, 8(4), 463.16Grizenko, N., Paci, M., & Joober, R. (2010). Is the inattentive subtype of ADHD different from the combined/hyperactive subtype?. Journal of attention disorders, 13(6), 649-657. https://doi.org/10.1177/1087054709347200.17Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K., & Robbins, K. A. (2015). The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics, 9.https://doi.org/10.3389/fninf.2015.00016,18Sagvolden, T., Borga Johansen, E., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of ADHD predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 397-419. https://doi.org/10.1017/S0140525X05000075,19Martella, D., Aldunate, N., Fuentes, L. J., & Sánchez-Pérez, N. (2020). Arousal 
and executive alterations in attention deficit hyperactivity disorder (ADHD). Frontiers in psychology, 11, 1991, https://doi.org/10.3389/fpsyg.2020.01991.20Isaac, V., Lopez, V., & Escobar, M. J. (2024). Arousal dysregulation and executive dysfunction in attention deficit hyperactivity disorder (ADHD). Frontiers in Psychiatry, 14, 1336040.,21Rubia, K. (2007). Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proceedings of the National Academy of Sciences, 104(50), 19663-19664.22Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D. E. E. A., ... & Rapoport, J. L. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the national academy of sciences, 104(49), 10.1073/pnas.0707741104.

Olivia Dance5, Dillan Cellier2, Bradley Voytek1-4
1Neurosciences Grad. Program, 2Dept. of Cognitive Sci., 3Halicioğlu Data Sci. Inst., 4Kavli Inst. for Brain and Mind, Univ. of California San Diego, La Jolla, CA, 5Dept. of Psychology

Significant 
correlation 
across all 
participants 
with age – 
timescales 
provide insight 
into robust 
developmental 
trends →

→ Nicely 
mirror the 
trends in 
our 
hypothesis 
imagery!

For both these plots, control 
subjects show significant 
negative correlations for the 
50-crossing metric with age, 
but ADHD subjects do not – a 
point of interest! 

For both these plots (purple/pink 
above), control subjects show 
significant negative correlations 
for the 50-crossing metric with 
age, but ADHD-subtype subjects 
do not – also a point of interest! 

Control v ADHD over 
development

n = 190
p < .001 ***
adj. r2 = 0.123

n = 43
ns
adj. r2 = 0.002

Control v ADHD-Subtypes over 
development
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Causal steep-tRAS increases working memory precision
Quirine van Engen1,7, Justin Riddle2,3,8, Bradley Voytek1,4-7

• Working Memory (WM) is our ability to briefly maintain information in mind (Baddeley, 1992) 
• WM has been extensively studies in relation to oscillatory brain dynamics 

• Theta (4-8Hz) (Adam et al., 2018) 
• Higher theta power ~ better WM capacity(Klimesch, 1999; Lara & Wallis, 2015) 
• Network coherence - frontal and parietal (Johnson et al., 2017; Wallis et al., 2015) 
• Theta tACS improves WM capacity (Polanía et al., 2012; Wolinski et al., 2018) 

• However; theta oscillations are surprisingly scarce (Mitchell et al., 2008; Wilson et al., 2022; Bailey et al., 2022) 
• Besides oscillations, EEG activity also contains aperiodic activity: 

• Time-domain: “background" activity manifesting as arrhythmic, unstructured 
fluctuations (Donoghue, Haller, Peterson, et al., 2020) 

• Frequency-domain: 1/f like distribution with systematic higher power in lower 
frequencies and lower power in higher frequencies 

• Decreases with age, altered by disease, and brain state (Voytek et al., 2015; Colombo et al., 2019; Smith, Kosik, 
van Engen et al., 2023) 

• Mixed results how aperiodic activity functionally supports WM (Virtue-Griffith et al., 2025;  van Engen et al., under 
review; McKeon et al., 2025) 

• Is aperiodic activity causally involved in WM capacity? 
• transcranial Random Aperiodic Stimulation (tRAS) 

Working Memory & Aperiodic Activity

1Dept. of Cognitive Sci., 2Dept. of Psychology, 3Program of Neuroscience, 4Halıcıoğlu Data Sci. Inst., 5Neurosciences Grad. Program, 6Kavli Inst. for Brain and Mind, 
7University of California San Diego, La Jolla, CA, 8Florida State University, Tallahassee, FL 
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Does aperiodic activity correlate with WM?

Stochastic Resonance (SR) as mechanistic explanation

Session 1: aperiodic activity & fm-theta

Steep-tRAS improves WM precision

WM precision decreases with load

PSD: 
rest: 5 seconds | task: 2 seconds 
Specparam model settings: 
• Max peaks: 12 | Width limit: [1,8] 
• Minimum peak height: 0.05 
• Max peaks: 12 
• Aperiodic mode: “fixed” 
• Frequency range: [2, 35] 
• Delete bad fits: 
rest: R2 < 2*std-mean | task: R2 < 3*std-mean

Session 1: baseline 
EEG continuously 

WM task 
Loads: 3, 4, 5 & 6

Session 2: stimulation 
EEG during rest  

Stimulation during WM task 
Individual loads: 3vs.5, 4vs,6, or 5vs.7

determine individual 
WM capacity

d’ (flat to steep)d’ (flat to steep)

P < 0.001

WM precision

Checking stimulus parameters 
• The measured aperiodic slope in Session 1 

(baseline) is within the stimulation parameters for 
Session 2.

Dealing with missing responses: 
•  More missing responses in higher loads 
•  1000 simulations inserting randomly 

picked values [-180, 180] degrees. 
•  Then, take average d’ 
 Results: 
•  Significant main effect of stimulation type 

(p=0.032) 
•  Post-hoc steep vs sham: p=0.067 
•  Post-hoc steep vs flat: p= 0.059 
•  2/3 of participants show intended effect

Linear Mixed Model: 
• Task shows a linear decrease of WM 

load on WM precision

slope
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Aperiodic slope Theta (aperiodic-corrected)

p = n.s.
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Aperiodic slope: 
• WM load is associated with 

a mild flattening of aperiodic 
activity 

• Aperiodic slope was 
significantly steeper during 
the delay period from pre-
stimulus intercept=0.071, 
p<0.001, 95%CI= [0.029, 
0.113] 

fm-theta: 
• WM load is not associated 

with aperiodic-corrected fm-
theta power 

• fm-theta had significantly 
more power during the 
delay period from pre-
stimulus (intercept=0.089, 
p<0.001, 95%CI= [0.049, 
0.13] 

p = n.s.

Is aperiodic activity 
at rest correlated to 
overall WM 
precision? 

• Non-significant 
downward trend 

• Indicating that a 
steeper slope at rest 
might be associated 
with better WM 

Can the effect of tRAS on WM precision 
be predicted by the effect of tRAS on 
aperiodic slope, or the slope at rest? 

•
• R2-adj = 0.087, p-model = 0.163 
• aperiodic slope (steep - flat) 

• β =1.54, p=0.066, 95%CI = [-0.12, 3.19] 
• aperiodic slope (rest session 1) 

• β =-0.03, p=0.92, 95%CI = [-0.52, 0.47]

∆d′ = β0 + β1 ∆sloperest session 2 + β2 sloperest session 1

1

+

WM mechanisms

WM 
behavior

+

aperiodic activitytRAS

• tRNS shows dose-dependent effect on 
stimulus detection (Pavan et al., 2019; van der Groen & 
Wenderoth, 2016) 

• tRNS either improves WM or has no 
effect (Murphy et al., 2020; Nejati et al., 2024; Tokikuni et al., 2024) vs (Looi 
et al., 2017; Mulquiney et al., 2011)

• So, why/how does (steep-)tRAS improve WM? 
• Increases signal detection through SR 
• The signal from the neural population encoding 

WM information is enhanced by adding external 
noise through tRAS.  

• But why is flat-tRAS not improving WM as well? 
• Pink noise stimulation (similar to tRAS) increases 

firing rate and spike reliability compared to white 
or brown noise (Qu et al., 2019) 

• There could be an unknown interaction between 
the spectral profile of noise, and its intensity

noise intensity
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SR peak



The STTC is a non-directional, correlational 
index of spike synchrony between two spike
 trains robust to firing rate.

Computing the STTC requires defining a ∆t such that ǿ1Ȁ T is the proportion of time within ±∆t of all spikes in 
a spike train  and ǿ2Ȁ P is the proportion of spikes in one spike train occurring within ±∆t of spikes in another 
spike train. Coefficient values range from -1 to 1 ǿ-1 is anticorrelated, 0 is no correlation, 1 is highly correlatedȀ. 
We computed STTC with ∆t = 5 ms.

Developmental Trajectory of Rhythmic and Non-Rhythmic Spiking 
in hiPSC-derived Cortical Tissue

Austin Hutton1, Deborah Pré2, Alexander T. Wooten2, Anne G. Bang2, Bradley Voytek1, Christian Cazares1

Development

Functional Connectivity Spectral Parameterization

Map features of rhythmic and 
non-rhythmic spiking activity

Broadly characterize network  
mean connectivity strength

Grouping cultures by  cell type proportions

hiPSCs

Model Features

Overview of Design and ApproachMotivation

Computational Methods Modeling Divergent Network Dynamics

Outcome & Impact

3 CONDITION GROUPS 
Fully excitatory       

ǿ~100% glut : ~0% GABAȀ n=39

Mostly excitatory  
ǿ~80% glut : ~20% GABAȀ n=37

Balanced                   
ǿ~50% glut : ~50% GABAȀ n=14

WEEKLY RECORDING
Recorded ~5 min of spiking activity 

weekly across weeks 2 - 7 of 
development post-plating

SAMPLE SIZE
n = 90 hiPSC cultures

ǿglutamatergic, GABAergic, ~10% astrocytesȀ

MEA SPECS
Sampling Rate: 12.5 kHz

4x4 electrode grid ǿ16 channelsȀ 
Electrode Spacing: 350 µm
Electrode Diameter: 50 µm

Recording Area: 1.1 mm x 1.1 mm

EXCLUSION CRITERIA
Cultures in any condition at any time point not 

satisfying the following were excluded…

Network Spike Frequency > 5 Hz
Active MEA Channels > 25%

Spike Time Tiling Coefficient ǿSTTCȀConnectivity

Spectral ParameterizationPower Spectra

Linear Mixed EffectsStatistical Models

ǿ                   Ȁ1 - PATB      1 - PBTA
STTC =

PA - TB        PB - TA+1
2

ǿCutts & Eglen, 2014Ȁ

off
se

t

exponent

adjusted
power

ǿDonoghue et al, 2020Ȁ

SpecParam decomposes 
features of the power spectrum 
to separate periodic ǿoscillatoryȀ 
from aperiodic ǿ1/fȀ background 
structure ǿoffset and  exponentȀ

Offset ǿvertical shift in power spectrum, 
overall background activityȀ

Exponent ǿsteepness of 1/f decay, linked to 
a network’s E:I balanceȀ

Adjusted Oscillatory Power ǿDelta 1-4 Hz, 
theta 4-8 Hz, alpha 8-13 HzȀ

Features were modeled using cell-type 
proportion ǿGroupȀ and developmental week 
ǿTimeȀ as fixed effects. Random intercepts 
ǿuwellȀ were included to account for repeated 
measures. The Time × Group interaction 
tested deviation in developmental trajectory 
from the reference group ǿ100:0Ȁ.

VOYTEKlab
E:I Balance-Specific Development

100% glut : 0% GABA

Time ǿsȀ
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80% glut : 20% GABA
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50% glut : 50% GABA
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Electrical neural signals consist of mixed periodic 
ǿrhythmicȀ and aperiodic ǿnon-rhythmicȀ spectral 
components that have been shown to reflect 
synchronized firing in cortical networks, and may serve as 
putative indices of cortical excitation-inhibition ǿE:IȀ 
balance.

However, it’s unclear how spectral components emerge 
at the earliest point of human development, how they 
become structured in space and time, and how different 
underlying biological properties influence the 
development of these neural activity features.

Human induced pluripotent stem cell ǿhiPSCȀ-derived 
cortical tissue cultures offer a promising platform ǿhigh 
throughput, experimentally controlled access to in vitro 
human neurodevelopmentȀ for characterizing spectral 
component features at the earliest stages of human 
neurodevelopment.

Quantify developmental changes in network 
connectivity and in periodic and aperiodic-like 
spiking activity across cortical tissue cultures 
engineered with distinct excitatory–inhibitory 

cell-type proportions

RESEARCH OBJECTIVE

1 Department of Cognitive Science, 
    University of California San Diego, 
    La Jolla, CA, USA

2 Conrad Prebys Center for Chemical Genomics, 
   Sanford Burnham Prebys Medical Discovery Institute,  
    La Jolla, CA, USA

Sanford Burnham Prebys
MEDICAL DISCOVERY INSTITUTE

Baseline-adjusted Coefficients 
of Network STTC Mean Trajectory
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Condition Groups ǿglut:GABAȀ

STTC Mean broadly indexes overall 
network connectivity strength 

Increased glutamatergic 
presence drives greater 

network connectivity 
strength over time

STTC Variance describes the 
heterogeneity of connectivity 

strength in the network. 

Increased glutamatergic 
presence drives greater 

heterogeneity in network 
connectivity strength 

over time

100:0    β=0.0035 
                 p=0.000*** 

80:20  β=0.0035
               p=0.995

 50:50  β=0.0017
                p=0.014*

Condition Groups ǿglut:GABAȀ
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Baseline-adjusted Coefficients 
of Network STTC Variance Trajectory

100:0    β=0.047 
                 p=0.000*** 

80:20  β=0.037
               p=0.052

 50:50  β=0.027
                p=0.002**

Cultures with increased 
glutamatergic presence 

showed steeper increases in 
aperiodic offset and exponent 

throughout development

0.0452
(p < 0.001)

0.0908
(p < 0.001)

0.0937
(p < 0.001)

0.0491
(p < 0.001)

0.1078
(p < 0.001)

0.2084
(p < 0.001)

0.1378
(p < 0.05)

0.0654
(p = 1.00)

0.0481
(p < 0.01)

0.1452
(p = 0.321)

0.0600
(p < 0.01)

0.0397
(p < 0.01)

0.0001
(p = 0.162)

0.0985
(p = 1.00)

0.0226
(p = 0.699)

Offset Exponent Delta Theta Alpha

100:0

80:20

50:50

C
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Spectral Features

Developmental Trajectories of Spectral Features
ǿheatmap values show model coefficients,  p-values are Bonferroni correctedȀ
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e

Cultures in the 80:20 
ǿglut:GABAȀ condition, showed 

steeper increases in 
aperiodic-adjusted oscillatory 
power, specifically in Theta and 

Alpha frequency bands

Broad developmental increases 
in aperiodic features ǿoffset and 

exponentȀ, as well as 
aperiodic-adjusted oscillatory 

power occurred across all 
cell-type proportion groups

Cell-type  composition 
profiles significantly impact 

developmental trajectories of 
spectral components and 

connectivity in hiPSC-derived 
cortical cultures 

Exponent = 0.58
Offset = -10.8

Exponent = 0.72
Offset = -10.3

Exponent = 0.84
Offset = -9.84

Exponent = 0.89
Offset = -9.62

Exponent = 0.90
Offset = -10.0

Exponent = 0.81
Offset = -10.1

Aperiodic exponent covaries 
with network connectivity 
strength, but in diverging 

trajectories for different  E:I 
cell-type proportions

Exponent vs. Connectivity Strength

Network Mean STTC ǿz-scoredȀ

Ex
po

ne
nt

100:0

80:20

50:50

β = 0.370 *

β = 0.234 

β = 0.253 *** 

Intercepts:          = 0.580***              = 0.777***             = 0.959***
ǿp < 0.05 * , p < 0.01** , p < 0.001*** Ȁ

Network Activity & Rasters STTC Matrix STTC Distribution Network Map Circular  Map Spectral Model

Channel ID  11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44 Mean STTCSTTC STTCSTTC
—  Power Spectrum
—  Full Model Fit
---  Aperiodic Fit

Note: For reported model coefficients 
ǿβȀ, group developmental trajectories 

were reconstructed as follows…
 

100:0 → β = β1
80:20 → β = β1 + β4
50:50 → β = β1 + β5
 

Model Formula

 Feature  = β0 + β1 Time + β2 Group1 + β3 Group2 + 
β4 ǿTime × Group1Ȁ + β5 ǿTime × Group2Ȁ + uwell + ε



Neural Signatures of Sleep Deprivation in Aperiodic EEG Activity

Introduction Results
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Spectral Parameterization

● EEG signals are composed of both periodic (oscillatory) and aperiodic (non-
oscillatory) features. Aperiodic features have been shown to influence the 
excitatory-inhibitory (E-I) balance of neural processes (Weist et al, 2023).

● Sleep loss affects this E-I balance by increasing inhibition rate. Previous work 
describes aperiodic changes across sleep stages and after sleep deprivation, 
this change can result in neurological impacts such as worsened attention and 
memory. 

● In the present investigation, we analyze an open resting-state EEG dataset 
with two sessions per subject: normal sleep (NS) vs. 24-h sleep deprivation 
(SD) - OpenNeuro ds004902 (Xiang, Fan, Bai, Lv, Lei; v1.0.8).

● Using a spectral parameterization model (SpecParam), we extract parameters, 
aperiodic offset and aperiodic exponent, per channel and compare NS vs SD 
within-subject.

● Results show a significant increase in aperiodic offset after SD in 5 different 
channels, with no significant change in aperiodic exponent. This is consistent 
with the expected disruption in E-I balance after SD. 

● DC offset adjustment, notch, and high/low pass filtering, muscle artifact 
removal, and ICA for blink removal. 

● Power Spectral Density (PSD) plots were generated per channel to visually 
identify and remove channels outside standard spectral ranges. 

Methods 

● Between sleep conditions, five channels showed significant aperiodic 
offset increases following sleep deprivation. These channels are 
clustered primarily in frontal and parietal regions.

● The offset shift reflects enhanced background neural activity across all 
frequencies, consistent with increased aperiodic activity following sleep 
loss. 

● Band-specific analysis reveals these offset changes differentially affect 
frequency bands.

● Due to offset and exponents strong collinearity, vertical offset shift or 
exponent steepness can both describe aperiodic power shifts in SD.

Frequency Specific Aperiodic Shift

● Relate findings to studies that examine how quickly aperiodic patterns 
normalize with sleep recovery, and do individual differences that rate.

● Explore relationships between aperiodic activity and sleep-specific 
oscillations (K-complexes, sleep spindles) to understand mechanisms of 
memory consolidation.

● Explore whether aperiodic biomarkers can predict susceptibility to sleep-
related cognitive disorders or be an early detection method.

● Resting-state EEG, N=71 (34 F, 37 M), ages 17–23 (20 ± 1.44); two sessions: 
normal sleep (NS) and sleep deprivation (SD) (24 h monitored wakefulness 
with not rigorous physical activity).

● Subject metadata also includes condition order and behavioral/mood metrics 
for future analysis.

● Parameters were calculated for 
each channel across both 
conditions for all subjects.

● Paired t-tests were conducted on 
within-subject differences (SD -
NS) for aperiodic exponent and 
offset parameters across all 
channels. Bonferroni correction 
was applied to account for testing 
two parameters per channel 
(corrected α = 0.025).

Figure 1. Example SpecParam aperiodic model 
fit 

Conclusion
● Our results are in agreement with work from “Impact of Sleep Deprivation On 

Aperiodic Activity: A Resting-State EEG Study” (Bai, Hu, Jülich, Le). Sleep 
deprivation produces significant increases in aperiodic EEG activity across 
frontal and parietal regions, predominantly affecting lower frequency bands 
(delta/theta).

● These changes reflect elevated background neural activity (1/f-like) consistent 
with reduced E-I balance as a result of SD. An increased aperiodic power 
increases inhibition rate in which can affect neural communication.

● Testing aperiodic components against spectral power across conditions allows 
for simple and clear effect size measuring that affirm similar findings.

● The spatial pattern of significantly affected channel aligns with previous 
work showing frontal sensitivity to sleep deprivation (Bai et al., 2024; Mu & 
Li, 2013).

Figure 5. Significant channel aperiodic PSD and 
the frequency band they significantly shifted in 
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Preprocessing

Figure 4A. Topo map of channels 
showing spatial distribution of 

significance 

Figure 4B. Channels significance 
and it proportion of offset 

difference

Figure 4C. Example power shift of 
aperiodic component across 

conditions
● SpecParam was used to extract key aspects of aperiodic activity found in EEG 

signals. The two parameters include aperiodic exponent, which quantifies the 
1/f-like background activity found in neural signals and aperiodic offset, which 
quantifies the vertical shift of the entire power spectrum across all frequencies. 

Figure 2. Spectral parameterization of mean Normal 
Sleep power spectrum across significant channels

Figure 7. Within-subject differences between conditions and percentage of aperiodic power change, sampled at 
5 Hz.

SD Reveals Difference in Aperiodic Offset

Figure 3. Spectral parameterization of mean Sleep 
Deprivation power spectrum across significant channels

Figure 6. Average PSD of significant channels 
across conditions. Colors denote frequency band

PDF of poster:

mailto:eas00@ucsd.edu
mailto:likaplan@ucsd.edu


Aperiodic activity as an EEG biomarker for sertraline response: Applications and limitations
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- Major Depressive Disorder (MDD) affects approx 1 in 12 people in the US 

- Commonly treated with Selective Serotonin Re-uptake Inhibitors (SSRIs) 

like Sertraline 

- Response to SERT or other mediations is variable, which needs biological 
indicators to guide treatment. These indicators can vary with severity, 
response to medication and mechanistic indicators, possibly 
identifiable through EEG, though so far, has been inconclusive 

- Aperiodic component (broadband 1/f) overlooked by traditional metrics, and 
not been explored for antidepressant response to sertraline


- Data has 198 resting state EEG from patients in a clinical trial (EMBARC 
Establishing Moderators and Biosignatures of Antidepressant Response in 
Clinical Care) for sertraline over 8 weeks 
- 94 treated with Sertraline 
- 104 treated with Placebo 

- We examined the utility of periodic and aperiodic components from the EEGs 
as: 

- Biological indicators of MDD severity,  
- Predictive indicators of sertraline treatment response, and  
- Mechanistic indicators of neural changes due to sertraline 

- While the outcome of biological and predictive indicators were inconclusive, 
we identified a highly significant reduction in aperiodic exponent in patients 
who received sertraline, a change not observed in patients who received 
placebo  

- provides a foundation for broader application of aperiodic spectral measures 
for other depression treatments and clinical populations

ivairagare@ucsd.eduvoytekresearch 

BACKGROUND

DISCUSSION AND FUTURE DIRECTIONS

What is the Aperiodic 
component of EEG?

indraniiii

WEEK 1 VS WEEK 8 TOPOMAPS DISPLAYING EXPONENTS 

8 WEEKS OF SERTRALINE TREATMENT DECREASES APERIODIC EXPONENT

TOPOMAPS DISPLAYING EXPONENT CHANGES IN 
PATIENTS TREATED WITH SERTRALINE VS PLACEBO

- Analyses relating the observed change in exponent to therapeutic 
outcome is ongoing.  

- By focusing on the aperiodic exponent, a parameter rarely emphasized 
in standard neurophysiological analyses, our findings explore its 
potential utility (or lack thereof) as a predictive biomarker and 
mechanistic indicator of treatment efficacy.  

Future Directions: 
- This work provides a foundation for broader application of aperiodic 

spectral measures for other depression treatments and clinical 
populations. 

- Look at electrode clusters that change the most during sertraline 
treatment for either both as a diagnostic indicator or as a predictive 
indicator at baseline.  

- Using the cluster analysis to see what features at what part of the brain 
is useful to either diagnose or predict.

APERIODIC EXPONENT IS NEITHER EFFECTIVE AS A 
BIOLOGICAL NOR AS A PREDICTIVE INDICATOR

BEFORE TREATMENT AFTER TREATMENT

Diagnostic Indicators

- Exhaustive 

regression  

- Formula used: ”
w0_score_17 ~ 
exponent + offset + 
alpha_amp + sex + 
age” 

- No. Of observations: 
198  

- r2 = 0.144           

- p(f-st) = 0.055

   SERTRALINE (SER) 
- Paired t-test 
- No of subjects: 94  
- effect size: 0.351 

    PLACEBO (PLA) 
- Paired t-test  
- No of Subjects:104  
- Effect size: 0.114

More on Specparam — 
Link to GitHub!

Spectral parameterization 
(specparam, formerly fooof) is a fast, 
efficient, and physiologically-
informed tool to parameterize neural 
power spectra.

***

Resting stage EEG data was collected from 
198 patients diagnosed with MDD before 
and after a double blind treatment of 
either sertraline or placebo over 8 weeks

DATASET

Predictive indicators  

- Same features from 
exhaustive 
regression as well as 
chronicity , logistic 
regression  

- Formula used: 
response ~ 
mean_offset + 
MddChronicity + 
mean_exponent + 
mean_alpha_amp + 
sex 

- No. Of observations: 
198 

- Pseudo r2 = 0.037     

 fmin=0.5, fmax=55, peak_width_limits=[1, 8], min_peak_height=0.05, max_n_peaks=6, Psds are calculated with 2 second epoch,  64 channels each subject
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