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Phase/amplitude coupling (PAC) is emerging as an important electrophysiological measure of local and
long-distance neuronal communication. Current techniques for calculating PAC provide a numerical index
that represents an average value across an arbitrarily long time period. This requires researchers to rely on
block design experiments and temporal concatenation at the cost of the sub-second temporal resolution
afforded by electrophysiological recordings. Here we present a method for calculating event-related phase/
amplitude coupling (ERPAC) designed to capture the temporal evolution of task-related changes in PAC
across events or between distant brain regions that is applicable to human or animal electromagnetic
recording.

© 2012 Elsevier Inc. All rights reserved.
Introduction

The mammalian neo- and archicortices generate electrophysiologi-
cal oscillatory rhythms (Buzsáki and Draguhn, 2004; Engel et al., 2001)
that interact to facilitate communication (Fries, 2005; Fröhlich and
McCormick, 2010; Sirota et al., 2008). The amplitude and phase of
these rhythms are typically assessed in an event-related manner across
trials or subjects. There is emerging evidence that frequency-specific
rhythms are often nested within other frequency bands (Kramer et al.,
2008a; Roopun et al., 2008; Tort et al., 2009; see Canolty and Knight,
2010 for a review). There are multiple forms of coupling dynamics:
phase/amplitude (Canolty et al., 2006; Cohen et al., 2009; Griesmayr
et al., 2010; Lakatos et al., 2008; Miller et al., 2010; Osipova et al.,
2008; Tort et al., 2009; Voytek et al., 2010a), phase/phase (Canolty
et al., 2007; Darvas et al., 2009; Palva et al., 2005; Tass et al., 1998),
and amplitude-to-amplitude (Bruns and Eckhorn, 2004; Voytek et al.,
2010b). It is proposed that phase/amplitude coupling (PAC) reflects in-
teractions between local microscale (Colgin et al., 2009; Quilichini et
al., 2010) and systems-level macroscale neuronal ensembles (Canolty
et al., 2010; Fries, 2005; Lisman and Idiart, 1995) that index cortical ex-
citability and network interactions (Vanhatalo et al., 2004). From a be-
havioral viewpoint PAC has been shown to track learning and memory
(Axmacher et al., 2010; Lisman and Idiart, 1995; Tort et al., 2009). PAC
magnitude also fluctuates at an extremely low (b0.1 Hz) rate at rest
(Foster and Parvizi, 2012).
k).
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Currently PAC calculation algorithms compute a value averaged
across a semi-arbitrary time window (Canolty et al., 2006; Cohen and
van Gaal, in press; Voytek et al., 2010a) (see Cohen, 2008; Penny
et al., 2008; Tort et al., 2010 for methodological details). The minimum
length of this timewindow is bounded by the frequency of the coupling
phase, as at least one full cycle is needed to calculate the distribution of
values of the coupling amplitude. However, the PAC metric is sensitive
to noise, and recent simulations have made use of >200 cycles to get
a reliable PAC estimate (Tort et al., 2010). This means, for example,
that if one is investigating PAC between theta phase (4–8 Hz) and
high gamma amplitude (80–150 Hz), the best temporal resolution
one could achieve at 4 Hz would be 250 ms (one full cycle). However,
50 s or more might be required for reliable estimates (250 ms/
cycle×200 cycles). This requires researchers to use block designs
(Voytek et al., 2010a), use long trial windows at the cost of temporal
resolution (Tort et al., 2009), or to concatenate time series across trials
(Tort et al., 2009) which could introduce spurious PAC due to edge arti-
facts (see Kramer et al., 2008b). These limitations present a problem for
analyzing subcomponents of a task such as encoding, delay, and retriev-
al periods during working memory.

Here we demonstrate a novel approach for assessing time-resolved,
event-related PAC (ERPAC). We provide results from subdural
electrocorticographic (ECoG) data from three human subjects with
implanted electrodes (Jacobs and Kahana, 2010) to demonstrate the
utility of the ERPAC analysis procedure. We show that this method
can be used to assess PAC both within local cortical regions as well as
between distant sites. We observed couplings between multiple fre-
quencies occurring at different time scales that evolved across trials
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and were independent of evoked responses. ERPAC provides a method
for assessing sub-second coupling dynamics supporting cortical
processing.

Methods

Data collection

We analyzed data from three patients with intractable epilepsywho
were implanted with chronic subdural electrodes for approximately
one week as part of a pre-operative procedure to localize the epi-
leptogenic focus. Data were recorded at the Johns Hopkins School of
Medicine where the surgeons determined electrode placement and
treatment solely on the clinical needs of each patient. All subjects gave
informed consent in accordancewith the Johns HopkinsMedicine Insti-
tutional Review Boards. ECoG data were recorded at 1000 Hz using a
Stellate Harmonie amplifier (Stellate Systems, Inc., Montreal, Canada).
Signals were digitized for further analysis and referenced offline to the
average potential of the electrodes included in analysis for each subject
separately.

Behavioral tasks

We include data from one ECoG patientwho performed a lateralized
visual attention task and from three patients who performed a pho-
neme repetition task. The visual attention task is described in full in a
previousmanuscript (Voytek et al., 2010c). Briefly, the subject was rap-
idly presented (107‐ms presentation; 800 or 1000‐ms interstimulus in-
terval (ISI)) with a series of non-target standard stimuli [p=0.7], target
stimuli [p=0.2], or neutral novel stimuli [p=0.1] to either the left or
right visualfield ([p=0.5] for each hemifield). On separate blocks of tri-
als, the subjectmanually responded to targets presented only to the left
or only to the right visual hemifield. For the phoneme repetition task,
the three ECoG subjects listened to a stream of vowel phonemes (e.g.,
“oo” as in “book”, “ee” as in “eel”, etc.) with an average 3000-ms ISI
and were asked to repeat each of them aloud. For the visual task,
there were 117 target trials and 380 standard non-target trials included
in the analysis. For the three subjectswhoperformed the phoneme task,
215 and 270 trials were included, respectively.

Data analysis

All electrophysiological data were put into a common average ref-
erence to avoid spatial bias due to the choice of intracranial reference
electrode (Boatman-Reich et al., 2010). All signals were analyzed in
MATLAB® (R2009b, Natick, MA) using custom scripts. For ERSP and
PAC figures (1, 3, 4, and 6) we corrected for multiple comparisons
using a false discovery rate (FDR) method (fdr.m function in EEGLAB
toolbox (Delorme and Makeig, 2004) in MATLAB). All analyses were
done on an individual subject and electrode basis.

Event-related spectral perturbations

For ERSP analyses, the data for each channel was first filtered in mul-
tiple, logarithmically-spaced pass bands using a two-way, zero phase-lag,
finite impulse response filter (eegfilt.m function in EEGLAB) to prevent
phase distortion. The filter order is defined as 3r where r is the ratio of
the sampling rate to the low-frequency cutoff of the filter, rounded
down. Data were filtered in partially overlapping bands from 0.5 to
250 Hz. We seeded the first pass band such that fp(n)=[fL(n)fH(n)];
where for n=1, fL(n)=0.5, and fH(n)=0.9. Successive bands were calcu-
lated such that fL(n)=0.85(fH(n−1)) and fH(n)=1.1+(fH(n−1)− fL(n−1))
fL(n). We then applied a Hilbert transform to each of these time-series
(hilbert.m function) resulting in a complex time-series, hx[n]=ax[n]
exp(iϕx[n])where ax[n] andϕx[n] are the analytic amplitudes and phases,
respectively, of a specific pass band fp(n). The phase time-series ϕx
assumes values within (−π, π] radians with a cosine phase such
that −/+π radians correspond to the troughs and 0 radians to the
peak. The Hilbert phase and amplitude estimation method yields
results equivalent to sliding window FFT and wavelet approaches
(Bruns, 2004).

From each trial the time-series of analytic amplitudes, ax (the abso-
lute value, or modulus, of hx), was used to create an average event-
related analytic amplitude (ERAA), an estimate of the band-specific sig-
nal energy. Each trial-specific epoch consisted of a 100-ms pre-stimulus
period and a 1000 ms post-stimulus period. To calculate the signifi-
cance of any event-related changes in analytic amplitude under a
given experimental condition, we used a standard resampling tech-
nique (see Voytek et al., 2010b) to assess whether any event-related
changes in analytic amplitude occurred relative to stimulus onset. To
statistically assess whether a change in analytic amplitude at a given la-
tencywas significantly different from the pre-stimulus baseline, we cre-
ated 1000 surrogate ERAAs (sERAA). Each sERAA was calculated by
taking the real stimulus onset times and shifting them randomly in
time, keeping the relative timing between each event the same as the
real timing, and then creating a new average sERAA. We chose this
event-onset shiftingmethod to account for any possible autocorrelation
in the time series. From this, each time point in the ERAAwas associated
with a distribution of 1000 surrogate analytic amplitudes against which
to compare the real ERAA.

The change from background activity was calculated with a z-score
and associated p-value at each time point (t) where the z-score was cal-
culated as z(t)=(a(t)−s(t))/σ(t), where a(t) is the real analytic am-
plitude at time (t), s(t) is the mean of the 1000 surrogate analytic
amplitudes at time (t), and σ(t) is the standard deviation of that popu-
lation of surrogate amplitudes. Because we are calculating a mean of
means, the central limit theorem suggests that this distribution will be
normal, and thus a z-score represents an estimate of the probability of
observing a particular analytic amplitude given the distribution of the
data. These methods were applied for each frequency band separately
to construct the ERSP images.

Because all time-frequency amplitude, phase, and regression anal-
yses were performed at each time point and across multiple frequen-
cy bands, we corrected for multiple comparisons using an FDR
method to correct the raw p-values obtained from the analyses. We
used no temporal binning or smoothing procedures, so we corrected
for all 1000 post-stimulus time points and 45 frequency bins, to
achieve a conservative and stringent correction procedure. The re-
sults we obtained were robust and survived multiple comparison cor-
rection, but statistical power could have been further increased using
analyses restricted to a priori bands of interest, or through temporal
downsampling. For example, rather than needing to correct for mul-
tiple comparisons for all time and frequency points, if the a priori hy-
pothesis is that theta phase is coupled to gamma amplitude, one
could restrict analyses to just those frequency bins.

Inter-trial phase locking (IPL)

For IPL analyses (Fig. 5b), each point in the Hilbert transform at a
channel at each passband was divided by the absolute value of its am-
plitude to generate a signed, unit-length, complex-valued time series;
epochs of these time series were then created as described above in
Event-related spectral perturbations. The absolute value of the mean
of the complex-valued epochs is the frequency-specific IPL, which
has a value from [0,1], where 0 represents total phase independence
and 1 means all phase values are equal, similar to previous methods
(Tallon-Baudry et al., 1996). The angle of the vector mean is the pre-
ferred phase. This method is equivalent to taking the circular mean
angle and vector length of the phase distribution at each point across
all trials, providing a metric of event-related phase locking across tri-
als for a given frequency band. This can be accomplished using the
CircStat toolbox (Berens, 2009) in MATLAB using circ_r.m).
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Amplitude ANOVA

We used a sliding standard ANOVA to calculate the percent of the
variance in the amplitude of each frequency band at each time point
across trials (ηx2[n]) that is explained by the independent variables
of interest (e.g., stimulus type). We restrict the explanation of our
methods to a single frequency band in a single channel, though for
the full analysis used to plot the figures this method was applied to
all frequency bands. To calculate the standard ANOVA in Fig. 1c, the
time series of analytic amplitudes (ax) was divided into epochs rela-
tive to the onset of each of the stimuli (100 ms before and 1000 ms
after stimulus onset). Each epoch was classified as belonging to a spe-
cific trial type for use in the ANOVA. For visual tasks, each trial type
was encoded as being either a target or non-target standard. These
coding variables were used in the ANOVA as independent variables;
we then calculated the F-statistic and associated p-value for the
main effects of stimulus on amplitude.
Circular ANOVA

For the sliding circular ANOVA, the samemethodwas used as for the
standard ANOVA. However, epochs were created around the phase
time-series ϕx (the angle of hx) and no baseline correction was
performed. Circular statisticswere performed using the CircStat toolbox
making use of the circular equivalents of the one-way and two-way
ANOVA (Watson–Williams test (circ_wwtest.m) and Harrison–Kanji
test (circ_hktest.m), respectively). A circular ANOVA attempts to explain
the amount of circular variance that is explained by task parameters
(e.g., stimulus type; see Fig. 1d). This approach has recently been used
to show that, during olfactory decision-making and response inhibition
in rats, neurons in the OFC show differential phase-synchrony in the γ
band (Van Wingerden et al., 2010).
Fig. 1. Event-related spectral responses to visual stimuli. (a) Reconstructed locations of electro
target presented to the visual hemifield contralateral to hemisphere in which the electrodes
non-target (standard) stimuli from an electrode over early visual cortex (green circle in
lower-frequency θ (4–8 Hz) and α (8–12 Hz) bands. Black and red contours denote regions of
formultiple comparisons (pb0.001). Using a sliding ANOVA approachwe calculated the percen
percent of variance explained by stimulus type, with significant regions outlined by contours (p
ANOVA reveals a main effect of stimulus type on γ amplitude. However circular ANOVA (d) re
independent of amplitude. In order to calculate the effect of stimulus type on phase we used a
above, but for main effects of stimulus on a priori (c) γ amplitude and (d) α phase.
Traditional phase/amplitude coupling (PAC)

We calculated traditional PAC using a general linear model after
Penny et al., 2008, where the gamma analytic amplitude (aγ) is esti-
mated from low-frequency phase (e.g. α) such that aγ=Xαβ+ε
where Xα is a three-column matrix composed of the sin and cos com-
ponents of the phase hα and a column of 1 s; β are the regression co-
efficients, and ε is the error term. For Fig. 3c, we estimated aγ from hα
for each trial separately. Because traditional PAC must be calculated
across time, we estimated PAC across two cycles of the lower bound
of α—(1000 ms/8 Hz)∗2 cycles)—or the first 250 ms of each trial.
Note that 2 cycles is an arbitrary decision, as it is difficult to deter-
mine a priori how much data is needed to get an accurate PAC esti-
mate. This loss of temporal resolution and the need for an arbitrary
time window is one of the problems addressed by the ERPAC method.

Circular–linear correlation

We assessed circular–linear correlation after Berens, 2009
(circ_corrcl.m in the CircStat toolbox) which linearizes the phase var-
iable into its sin and cos components and calculates a single correla-
tion coefficient, ρϕa such that

ρϕa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ca þ r2sa−2rcarsarcs

1−r2cs

s
;

where rca=c(cos ϕ[n], a[n]), rsa=c(sin ϕ[n], a[n]), rcs=c(sin ϕ[n],
cos ϕ[n]) with c(x,y) equal to the Pearson correlation between x and
y, ϕ[n] equal to the instantaneous phase, and a[n] equal to the instan-
taneous analytic amplitude. This method allows us to examine the re-
lationship between a linear variable (such as γ amplitude) and a
circular variable (such as α phase) across trials. This approach has
des on the inferior surface of the brain. In this example, the subject is viewing an attended
are implanted. (b) ERSP plots (z-scores) for attended visual targets and attended visual
a). Event-related amplitude increases can be seen in broadband γ (80–150 Hz) and
significant event-related amplitude increases and decreases, respectively, after correcting
t of the variance explained in (c) amplitude or (d) phase by stimulus type. Color represents
b0.001 after correcting formultiple comparisons). As suggested by the ERSPs, (c) standard
veals a main effect of stimulus type on early α (8–12 Hz) phase that provides information
circular ANOVA (see Methods). Line plots below c and d are similar as the spectral plots

image of Fig.�1


Fig. 2. Comparison of phase/amplitude coupling methods. (a) Methods for calculating traditional blocked PAC and event-related PAC (ERPAC) begin similarly: the raw signal is fil-
tered into separate amplitude and phase components (here broadband γ analytic amplitude and α phase). For traditional blocked PAC analyses, a single PAC index is calculated
across an arbitrarily long time window at the cost of temporal resolution. (b) To calculate ERPAC, the phase and time series are broken into time windows of equal length around
each trial, time-locked to the onset of stimulus presentation (example black rectangles in a). In contrast to blocked PAC, which is calculated across time, ERPAC is calculated across
trials separately at each time point. In this example (from the electrode shown in Fig. 1), trial-by-trial differences in α phase explain a significant amount of the inter-trial variability
in broadband γ amplitude during a brief time window (50–250 ms) after stimulus onset. See Methods for full details.
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recently been used to examine the relationship between scalp EEG θ
phase and global field power during attention in humans (Busch
and VanRullen, 2010).

We can compare the significance of the difference between corre-
lation coefficients ρ1 and ρ2 by first applying Fisher's z-transform to

normalize correlation coefficients such that zrn ¼ 1
2 ln 1þρn

1−ρn

� �
and cal-

culating the difference Δρz=z(ρ1)−z(ρ2) and associated standard

error σ ¼
ffiffiffiffiffiffiffiffiffi

1
n1−3

q
þ 1

n2−3. From this we can calculate the z-score z=

Δρz/σ and associated p-value.
Event-related phase/amplitude coupling (ERPAC)

We introduce amethod for ERPACmaking use of either the circular–
linear correlation above or itsmore generalized formof a circular–linear
regression. We calculated ERPAC using each channel's frequency-
dependent instantaneous amplitude as the regressand and the sin and
cos components of the phase as the regressors (see Penny et al.,
2008). For example, if we wish to determine the amount of trial-
by-trial variance in the high frequency broadband γ amplitude
(80–150 Hz; Miller et al., 2009) that can be explained by trial-by-trial
variations in α phase (8–12 Hz), we can calculate the correlation be-
tween γ amplitude (aγ) and α phase (ϕα) (or the regression between
them) at each time point. This method is “event-related” in that we ex-
amine PAC at each time point, across trials, thus unmasking sub-second
changes in PAC caused by an event of interest.

To examine the possibility that phase at one electrode correlates
with amplitude at another, we calculated ERPAC between α and θ
phase at four responsive visual cortical electrodes and the frontal
electrode that showed the largest target-related γ amplitude re-
sponse. While this type of selection may have the appearance of “dou-
ble dipping” (Kriegeskorte et al., 2009), phase and amplitude are
statistically independent, and phase information was not used in
the frontal electrode selection analysis. We have made all ERPAC
code available online as a resource for other researchers (http://
darb.ketyov.com/professional/publications/erpac.zip).

Assessing possible ERPAC estimation artifacts

To examine the effect of stimulus-evoked amplitude changes
or IPL on estimates of ERPAC, we performed a sliding window
resampling analysis (Fig. 4c) to quantify the likelihood that the ob-
served ERPAC is due to a specific statistical relationship between
trial-by-trial amplitude and phase components, and not, for example,
due to a possible spurious relationship induced by “sharp” artifacts
(see Kramer et al., 2008b) or stimulus-induced. For normal ERPAC
calculations, what is important is the trial-by-trial covariance be-
tween amplitude and phase. So for surrogate analyses we kept the ac-
tual analytic amplitude and phase values at each time point, but
randomized the trial labels. This keeps the stimulus-evoked changes
in amplitude or IPL intact while randomizing the relative trial struc-
ture between the two variables and is similar to methods used to cal-
culate significance in e.g. phase synchrony (Lachaux et al., 1999). This
was done 1000 times at each time point. If the observed ERPAC is
caused by a spurious artifact then that value should not be improba-
ble given the possible distribution of ERPAC values drawn from the
permutation testing. In other words, at each time point we can
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Fig. 3. Event-related phase/amplitude coupling modulated by task demands. Trial-by-trial variance in low frequency phase explains a significant amount of the trial-by-trial var-
iance in γ amplitude in visual cortex in response to (a) attended non-target standard and (b) attended target stimuli (data are from the same electrode as in Fig. 1). (c) Traditional
PAC for a priori α/γ coupling across the first 250 ms post-stimulus onset shows no significant difference between non-targets (blue) and targets (red). Note the lack of temporal
resolution because PAC is calculated across time and averaged across trials. In contrast, ERPAC (d) is calculated across trials on a point-by-point basis in the time series. This
shows that PAC in response to targets (red) is significantly higher compared to non-targets (blue) during the same 250 ms post-stimulus time window where traditional PAC
showed no differences (black dots above ERPAC traces denote time points with a significant PAC difference between stimuli at pb0.01; see Methods). Error bars indicate SEM.
(n.s.), not significant (p=0.14).
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compute the z-score and associated p-value of observing the real
ERPAC value given the distribution of possible values.

To further examine the relationship between event-related changes
in analytic amplitude and estimates of ERPAC, we performed a separate
set of analyses (Fig. 6) to more directly test the effect of γ amplitude on
ERPAC estimates by using two different, but related, sliding-window
Fig. 4. Event-related phase/amplitude coupling is not an artifact of stimulus-evoked responses.
IPL (b) during the same approximate time window where we observed significant ERPAC (Fi
conducted a resampling analysis that preserves these induced changes but randomizes the inte
the order of the trial-wise α phase values with respect to the γ amplitude values at that same
keeps the distributions exactly the same, preserving the induced changes in frequency-specific
This was done 1000 times at each time point to create a surrogate distribution of possible PAC
surrogate distribution to calculate the probability that the observed PAC is due to the exact tria
naturally from the data. (c) We find that the likelihood of the observed PAC values occurring d
tween γ amplitude and α phase, is improbable (pb10−20).
methods. The first is an “opening window” method where we use suc-
cessively more trials in the α phase/γ amplitude ERPAC calculations
(from 50 to all 117 attended target trials) at two neighboring electrodes
that exhibit different trial-by-trial γ amplitude changes. The second
method is a simple sliding-window technique calculating ERPAC on
50-trial bins with a one-trial increment.
Target stimuliwere associatedwith significant, transient changes inγ amplitude (a) and α
g. 3d). To assess whether ERPAC was an artifact of these stimulus-induced responses, we
r-trial relationship between amplitude and phase. That is, for each time point, we shuffled
time point and calculated the ERPAC between this shuffled α phase and γ amplitude. This
analytic amplitude and phase, but randomizes the inter-trial relationship between them.
values given the data. We then compared the real PAC value at each time point with the
l-by-trial relationship between phase and amplitude, or whether the observed PAC arises
uring the first 250 ms after stimulus onset, absent a specific trial-by-trial relationship be-

image of Fig.�3
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Fig. 5. Inter-regional phase/amplitude coupling. The event-related PAC methods described are not limited to within-electrode effects. For example, θ phase from a visual cortical
electrode (purple circle, top) correlates with γ amplitude at a target-responsive medial frontal site (purple circle, bottom). (a) Both the visual cortical and frontal sites exhibit strong
event-related spectral perturbations (ERSPs) in response to attended targets. Both sites exhibit early (b250 ms) target-related γ amplitude increases with the frontal site showing
activity at a slightly longer latency. (b) Similarly, both sites show early inter-trial phase-locking (IPL) in the α band, though IPL is weaker at the frontal site (contours: pb0.001 after
correcting for multiple comparisons). (c) Interestingly, although visual cortical IPL is strongest in the α band, phase of the θ band within the visual cortex that predicts γ amplitude
at the frontal site during the time-period of frontal event-related gamma γ increases (contour: pb0.05 after correcting for multiple comparisons; α/γ PAC not shown).
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Results

Event-related amplitude and phase changes

An analysis of the effect of visual stimulus types (attended targets
and standard non-targets) on event-related spectral perturbation
(ERSP) in visual cortex (Fig. 1a) reveals an early latency (b100 ms)
increase in high frequency γ (80–150 Hz) and low frequency δ
(1–4 Hz) and θ (4–8 Hz) activity for both stimulus types (Fig. 1b;
pb0.001, corrected for multiple comparisons). Upon visual inspec-
tion, it appears that γ and α (8–12 Hz) amplitudes are greater in re-
sponse to targets compared to non-targets. A sliding-window
standard ANOVA corroborates this observation, highlighting a main
effect of stimulus type on γ and α amplitudes (Fig. 1c). However,
what cannot be seen in the classic ERSP plot is also an effect of stim-
ulus type on α phase distribution, revealed by circular ANOVA
(Fig. 1d; pb0.001, corrected; see Methods).

Event-related phase/amplitude coupling

By using a circular–linear correlation or regression analysis (see
Fig. 2 and Methods), we find transient (b250 ms) effects of attention
to visual stimulus (attended non-target standards and attended tar-
gets) on ERPAC over visual cortex (Figs. 3a and b; pb0.001,
corrected). We observe that variance in low frequency δ and α phases
explain the trial-by-trial variance in γ amplitude, and that these ef-
fects are not seen using traditional PAC methods (Fig. 3c). ERPAC is
significantly stronger for attended targets than for non-target stimuli
(Fig. 3d), and this target-specific ERPAC effect is not an artifact caused
by stimulus-related changes in amplitude or phase (Figs. 4a–c).

Importantly, this ERPAC method assesses coupling between dis-
tant brain regions (Fig. 5). For example, in a midline frontal electrode
that demonstrates significant (~200–400 ms) γ amplitude increases
in response to targets we find that visual cortical θ phase correlates
with frontal γ amplitude (Fig. 5). This technique might be useful for
highlighting long-distance bottom-up and top-down interregional
communication via neuronal synchrony (Engel et al., 2001; Fries,
2005; Womelsdorf and Fries, 2007).

We assessed the trial-by-trial evolution of ERPAC by examining
two electrodes over visual cortex that exhibit strong γ activity in re-
sponse to attended targets. We observe complex intertrial evolution
of early (100–200 ms) γ activity (Fig. 6). For example, across trials,
at two neighboring electrodes, γ amplitude is anti-correlated (r=−
0.26, p=0.005) such that one electrode exhibits strong a γ during
the first 20–30 target trials, but this response decreases or attenuates
with successive trials. In contrast, γ activity at the neighboring elec-
trode shows the opposite pattern. Furthermore, using separate sliding
window techniques (see Methods), we show that α/γ ERPAC is not
necessarily contingent upon γ amplitude. This is evident given that
the electrode that shows decreasing γ activity across trials (green)
also shows increasing α/γ ERPAC and the electrode that shows in-
creasing γ across trials (orange) shows decreasing α/γ ERPAC.
Phoneme repetition

We extended the findings from our ECoG data in the visual
target-detection task to the auditory modality and provide results
from subjects with subdural ECoG performing a simple phoneme rep-
etition task (see Methods). Similar to the visual attention data, sub-
jects performing an auditory task also exhibit transient ERPAC.
Consistent with previous reports of δ phase/γ amplitude relationships
(Lakatos et al., 2008; Whittingstall and Logothetis, 2009), we show
that the δ phase correlates with the γ amplitude in auditory cortical
areas (Fig. 7). Notably one of the three subjects showed no significant
δ phase/γ amplitude ERPAC effects. These findings illustrate that

image of Fig.�5


Fig. 7. Auditory cortex event-related phase/amplitude coupling in response to phonemes. In three separate subjects performing a phoneme repetition task, we observe significant,
transient ERPAC between γ amplitude and δ phase (1–4 Hz) in auditory cortical regions for two subjects, illustrating the broad applicability of this method.

Fig. 6. Relationship between phase/amplitude coupling and number of trials in the analysis. Two electrodes in the visual cortex show target-related γ responses with different
trial-by-trial dynamics. γ amplitude between these electrodes is anti-correlated across trials (r=−0.26, p=0.005) such that (a) the medial electrode (green) shows strong γ dur-
ing early trials that diminishes across successive trials while (b) the neighboring electrode (orange) shows the opposite response. (c, d) We used two sliding-window techniques to
calculate the effect of number of trials on ERPAC estimates. All plots show the percent of the variance in inter-trial γ amplitude explained by α phase. In the top plots we used an
opening-window technique; for the bottom plots we used a sliding window technique (see Methods). Both methods show that ERPAC changes over time, independent of the
changes in γ amplitude, such that in the medial electrode (green), even though γ amplitude decreases across trials, α/γ ERPAC increases, and vice versa for the more lateral electrode
(orange).
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ERPAC is not limited to one subject, cortical region, or sensory modal-
ity, but rather might be a more broadly generalizable phenomenon.
Discussion

We describe a PAC method that provides time-resolved calcula-
tion of event-related PAC (ERPAC). Because it is based on correlation
and regression techniques, it is intuitive and straightforward to
instantiate. While other methods exist for examining time-resolved
phase/phase or amplitude/amplitude relationships (Bruns and
Eckhorn, 2004; Darvas et al., 2009), this method combines a circular
(phase) and linear (amplitude) variable with improved temporal res-
olution permitting within-trial changes in PAC.

Aswe show in Fig. 3c, traditional PACmeasuresmiss temporally dis-
crete phase/amplitude coupling effects that are observed when ana-
lyzed using our ERPAC technique. This is likely due to the underlying
differences between what the two methods address: traditional PAC
asks, “what is the statistical relationship between phase and amplitude
across time?” at the expense of temporal resolution. In contrast, ERPAC
asks, “what is the statistical relationship between phase and amplitude
across trials, at each time point?” That is, with ERPAC we can examine
sub-second changes in PAC related to the onset of an event of interest.
This difference is analogous to the different inferences that can be
drawn from event-related vs. block design fMRI studies and highlights
the utility of this technique for assessing within-trial changes in PAC.

It is important to point out that we are not limited to using the
phase at one channel to predict amplitude at that same channel (or
vice versa). That is, we can use the phase of one channel to predict fre-
quency band amplitudes at another (nearby or distant) channel (e.g.,
Fig. 5), which might be useful for examining the degree and timing of
top-down or bottom-up communication between brain areas. An im-
portant caveat to consider is that cross-channel phase coupling or
amplitude envelope correlations might have spurious effects on
interregional coupling dynamics. For example, if two electrodes, A
and B have correlated gamma amplitude envelopes, and theta phase
in electrode A predicts gamma amplitude in A, the theta phase from
A will also predict gamma amplitude in B. Note that recent new
methods provide a multivariate solution to a network of coupled os-
cillators the diminishes the solution space (Canolty et al., 2010).

This technique provides a method for observing, quantifying, and
statistically comparing ERPAC dynamics in a time-resolved and com-
putationally tractable manner. Given that this method calculates PAC
across trials at each time point it is likely capturing evoked (as op-
posed to induced) PAC effects (see David et al., 2006). This would pro-
vide complementary information to time-averaged PAC that would be
better suited to capturing induced PAC. Here we use this method to
analyze ECoG data from subdural recordings in humans, but the
method can be applied to other forms of electromagnetic recordings
in animals and man.
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