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Abstract:  19	
Neural circuits sit in a dynamic balance between excitation (E) and inhibition (I). 20	
Fluctuations in E:I balance have been shown to influence neural computation, working 21	
memory, and information flow, while more drastic shifts and aberrant E:I patterns are 22	
implicated in numerous neurological and psychiatric disorders. Current methods for 23	
measuring E:I dynamics require invasive procedures that are difficult to perform in 24	
behaving animals, and nearly impossible in humans. This has limited the ability to 25	
examine the full impact that E:I shifts have in cognition and disease. In this study, we 26	
develop a computational model to show that E:I changes can be estimated from the 27	
power law exponent (slope) of the electrophysiological power spectrum. Predictions from 28	
the model are validated in published data from two species (rats and macaques). We 29	
find that reducing E:I ratio via the administration of general anesthetic in macaques 30	
results in steeper power spectra, tracking conscious state over time. This causal result is 31	
supported by inference from known anatomical E:I changes across the depth of rat 32	
hippocampus, as well as oscillatory theta-modulated dynamic shifts in E:I. Our results 33	
provide strong evidence that E:I ratio can be readily inferred from electrophysiological 34	
recordings at many spatial scales, ranging from the local field potential to surface 35	
electrocorticography. This simple method for estimating E:I ratio—one that can be 36	
applied retrospectively to existing data—removes a major hurdle in understanding a 37	
currently difficult to measure, yet fundamental, aspect of neural computation. 38	
 39	
Key Words: excitation-inhibition balance, local field potential, electrocorticography, 40	
power spectral density, power law  41	
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Introduction 42	

Neurons are constantly bombarded with spontaneous synaptic inputs. This state of 43	

fluctuating activity is referred to as the high-conductance state (Destexhe et al., 2003), 44	

and gives rise to the asynchronous, irregular (Poisson-like) firing observed in vivo 45	

(Destexhe et al., 2001). In this state, neural circuits sit in a balance between synaptic 46	

excitation (E) and inhibition (I), typically consisting of fast glutamate and slower GABA 47	

inputs, respectively, where inhibition is two to six times the strength of excitation (Alvarez 48	

and Destexhe, 2004; Xue et al., 2014). Physiologically, the balance of E:I interaction is 49	

essential for neuronal homeostasis (Turrigiano and Nelson, 2004) and the formation of 50	

neural oscillations (Atallah and Scanziani, 2009). Computationally, E:I balance allows for 51	

efficient information transmission and gating (Salinas and Sejnowski, 2001; Vogels and 52	

Abbott, 2009), network computation (Mariño et al., 2005), and working memory 53	

maintenance (Lim and Goldman, 2013). Conversely, an imbalance between excitation 54	

and inhibition, during key developmental periods or tonically thereafter, is implicated in 55	

neurological and psychiatric disorders such as epilepsy (González-Ramírez et al., 2015; 56	

Symonds, 1959), schizophrenia (Uhlhaas and Singer, 2010), and autism (Dani et al., 57	

2005; Mariani et al., 2015; Rubenstein and Merzenich, 2003), as well as impairments in 58	

information processing and social exploration (Yizhar et al., 2011). 59	

Given such a state of intricate balance and its profound consequences when 60	

disturbed, quantifying the E:I ratio could aid in better characterizing the functional state 61	

of the brain. Existing methods for estimating E:I ratio focus predominantly on 62	

interrogation of precisely selected cells, either through identification of excitatory and 63	

inhibitory neurons based on extracellular action potential waveforms (Peyrache et al., 64	

2012), or by intracellular voltage-clamp recordings to measure synaptic currents (Monier 65	

et al., 2008), often combined with pharmacological or optogenetic manipulations 66	

(Reinhold et al., 2015; Xue et al., 2014). These methods are invasive and are restricted 67	
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to small populations of cells, making them difficult to apply clinically and to in vivo 68	

population-level analyses critical for understanding neural network functioning. Other 69	

methods, such as magnetic resonance spectroscopy (Henry et al., 2011) and dynamic 70	

causal modeling (Legon et al., 2015), are able to provide greater spatial coverage, 71	

enabling the sampling of E:I ratio across the brain. However, this gain comes at a cost of 72	

temporal resolution – requiring several minutes of data for a single snapshot – and are 73	

based on restrictive connectivity assumptions. 74	

Here, we aim to address this important gap in methodology to measure E:I ratio 75	

with broad population coverage and fine temporal resolution. Two recent lines of 76	

modeling work motivate our starting hypothesis. First, it has been shown that synaptic 77	

input fluctuations during the high conductance state can be accurately modeled by a 78	

summation of two stationary stochastic processes representing excitatory and inhibitory 79	

inputs (Alvarez and Destexhe, 2004). These inputs have different rates of decay, 80	

corresponding to a faster AMPA current and a slower GABAA current, which can be 81	

readily differentiated in the frequency domain and computationally inferred from single 82	

membrane voltage traces (Pospischil et al., 2009; Fig. 1B). Second, population-level 83	

neural field recordings, such as the local field potential (LFP) and electrocorticography 84	

(ECoG), have been shown to be primarily dominated by postsynaptic currents (PSC) 85	

across large populations (Buzsáki et al., 2012; Mazzoni et al., 2015; Miller et al., 2009). 86	

Additionally, recent work by (Haider et al., 2016) observed tight coupling between the 87	

LFP and synaptic inputs in the time domain. Thus, we combine these two findings and 88	

reason that changes in the relative contribution between excitatory and inhibitory 89	

synaptic currents must also be reflected in the field potential, and in particular, in the 90	

frequency domain representation (power spectral density, or PSD) of LFP and ECoG 91	

recordings. In this work, we derive a straightforward metric that closely tracks E:I ratio 92	

via computational modeling, and demonstrate its empirical validity by reanalyzing 93	
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publically available databases from two different mammalian species. Specifically, we 94	

test the hypotheses that anatomical and theta oscillation-modulated changes in 95	

excitation and inhibition in the rat hippocampus can be inferred from CA1 local field 96	

potentials, and that anesthesia-induced global inhibition is reflected in macaque cortical 97	

electrocorticography. 98	

 99	

Materials & Methods 100	

LFP simulation. We simulate local field potentials under the high conductance state 101	

(Alvarez and Destexhe, 2004), with the assumption that the LFP is a linear summation of 102	

total excitatory and inhibitory currents (Mazzoni et al., 2015). Poisson spike trains from 103	

one excitatory and one inhibitory population are generated by integrating interspike 104	

intervals (ISI) drawn from independent exponential distributions, with specified mean 105	

rate parameter (Fig. 1A). Each spike train is convolved with their respective conductance 106	

profiles, which are modeled as a difference-of-exponentials defined by the rise and 107	

decay time constants of AMPA and GABAA receptors (Eq.1, Fig. 1B). Aggregate values 108	

for synaptic constants are taken from CNRGlab @ UWaterloo (see Neurotransmitter 109	

Time Constants in Ref; Table 1). The two resulting time series represent total excitatory 110	

(gE) and inhibitory (gI) conductances, respectively (Fig. 1C). E:I ratio is defined as the 111	

ratio of mean excitatory conductance to mean inhibitory conductance over the simulation 112	

time, and specific E:I ratios are achieved by multiplying the inhibitory conductance by a 113	

constant, such that mean gI is 2-6 times mean gE. To calculate current, conductances are 114	

multiplied by the difference between resting potential (-65 mV) and AMPA and GABAA 115	

reversal potential, respectively. Local field potential (LFP), finally, is computed as the 116	

summation of the total excitatory and inhibitory current. All simulation parameters are 117	

specified in Table 1. Total LFP power is normalized to unity for each E:I ratio. 118	

 119	
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Equation 1. Difference-of-exponential PSC in time domain 120	

PSC t = C −e
()
*+,-. 	+ 	e

()
*1.234 , C: amplitude	normalization	constant 121	

Table 1. LFP Simulation Parameters 122	

Parameter Value 

Population Firing Rate (E, I) 2 Hz, 5 Hz 

Population Size (E, I) 8000, 2000 

Resting Membrane Potential -65 mV 

Reversal Potential (AMPA, GABAA) 0 mV, -80 mV 

Conductance Rise Time (AMPA, GABAA) 0.1 ms, 0.5 ms 

Conductance Decay Time (AMPA, GABAA) 2 ms, 10 ms 

E:I Ratio 1:2 to 1:6 

 123	

Power spectral density (PSD). For all time series data (simulated and recorded LFP, 124	

ECoG), the PSD is estimated by computing the median of the square magnitude of the 125	

sliding window (short-time) Fourier transform (STFT). The median was used instead of 126	

the mean (Welch’s method) to account for the non-Gaussian distribution of spectral data, 127	

as well as to eliminate the contributions of extreme outliers. All STFT are computed with 128	

a window length of 1 second (2-seconds for CA1 data), and an overlap length of 0.25 129	

seconds. A hamming window of corresponding length is applied prior to taking the FFT. 130	

 131	

1/f Slope Fitting. To compute the 1/f power law exponent (log-log slope), we use robust 132	

linear regression (MATLAB robustfit.m) to find the slope for the line of best fit over 133	

specified frequency ranges of the PSD (30-50 Hz, 40-60 Hz for macaque ECoG) (Eq.2). 134	

Equation 2. Log-Log Linear Fit Parameter over Empirical PSD 135	

argmin
E,F

[logHI PSD − b	 + 	χ logHI F ] , F ∈ 30,50 	𝑜𝑟	[40,60] 136	
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Hippocampal LFP and CA1 depth analysis. LFP data (1250 Hz sampling rate) is 137	

recorded in stratum pyramidale of CA1 via 4 to 8 shank electrodes (200 um inter-shank 138	

distance), with 8 electrodes (160 um2 area) along the depth of each shank (20-um 139	

spacing), perpendicular to the pyramidal cell body layer (Mizuseki et al., 2009). PSD is 140	

computed for each electrode as specified above, and 1/f slope extracted. As in Mizuseki 141	

et al., 2011, we align the shanks such that the electrode with the maximal ripple power 142	

(150-250 Hz) is set to position 0, the middle of stratum pyramidale. Other electrodes are 143	

vertically translated accordingly. This procedure is repeated for all shanks in every 144	

recording (4 rats, 20 sessions total), resulting in slope estimates spanning a depth of 280 145	

um, centered on the pyramidal layer. AMPA and GABAA synapse densities are adapted 146	

from (Megías et al., 2001), for proximal stratum oriens and stratum radiatum dendrites, 147	

and smoothed with a 5-point Gaussian window to produce 15 data points at positions 148	

equivalent to LFP electrodes. Spearman correlation is computed by combining slope 149	

values at the same depth across all sessions and all rats. 150	

 151	

Multivariate Regression Model. Since the synaptic density estimates for E and I are 152	

independent but correlated measurements, and E:I ratio is dependent on both previous 153	

measures, we built a multivariate regression model to better delineate contributions from 154	

the synaptic variables. Combinations of E, I, and E:I ratio were used as predictors, and 155	

slope as the predicted variable, and we compute model coefficient, significance, and 156	

ordinary and adjusted R2 values (MATLAB, LinearModel.fit). 157	

 158	

Theta phase-modulated slope. Theta oscillation is first isolated with a FIR bandpass 159	

filter 5-12 Hz, (EEGLAB, eegfilt.m). Theta phase is computed as the complex phase 160	

angle of the Hilbert transform of the theta oscillation. Segments of theta phase are 161	

categorized as peak [-π/2 to π/2, through 0] or trough [π/2 to 3π/2, through π]. Each 162	
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corresponding segment in the raw data (~75 samples) is then labeled as peak or trough, 163	

Hamming-windowed, and padded to 1250 samples. Average PSD for each phase 164	

category is computed as the median of all windowed FFT of the data segments of that 165	

category. 1/f slope is then fit to the average PSDs. Per-channel significance statistics are 166	

calculated by fitting 1/f slope to each individual cycle STFT for each channel and 167	

compared using two-sample t-test. To avoid power contamination in the short-time 168	

window estimates from observed beta oscillation, LFP data is notch filtered between 15-169	

25 Hz. All results do not change when not filtered for beta, hence are not presented 170	

below.  171	

 172	

Macaque ECoG During Anesthesia. ECoG data was collected from 2 macaque 173	

monkeys during rest, delivery of anesthesia (propofol, 5 & 5.2 mg/kg), and recovery 174	

(Yanagawa et al., 2013). PSD was computed for all ECoG channels (n = 128) for each 175	

experimental condition and fitted for 1/f slope. Due to clear gamma oscillation near 30 176	

Hz biasing slope estimates, we fit over 40-60 Hz to avoid oscillatory contamination. We 177	

then compared slope fit differences at each electrode between conditions (paired-178	

samples t-test). Time resolved slope fit was achieved by computing sliding window 179	

spectra (absolute value squared of FFT) throughout the duration of the recording (1 s 180	

window, 0.25 s step), and a slope estimate was computed for each window. A 15-181	

second median filter was applied to smooth the slope time series plot for Fig. 4D. 182	

All simulation and analysis code can be found at https://github.com/voytekresearch/ 183	

 184	

 185	

 186	

 187	

 188	
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Results 189	

E:I ratio drives 1/f changes in simulation 190	

To model LFP under the high conductance state, we simulate an efferent “LFP” 191	

population receiving independent Poissonic spike trains from an excitatory and an 192	

inhibitory population, as detailed in the Methods. In the frequency domain, we observe 193	

that the power spectral density of the LFP (LFP-PSD) follows a decaying (1/f) power law 194	

for frequencies past 20 Hz (negatively linear in log-log plot), which directly results from 195	

adding the two current components, both following power law decays (Fig. 1D). Note 196	

that the current-PSDs begin decaying at different frequencies, due to the different rise 197	

and decay time constants of AMPA and GABAA conductance profiles, which have been 198	

previously observed in intracellular models of the balanced, high conductance state 199	

(Destexhe and Rudolph, 2004). 200	

By changing the relative contributions of excitation and inhibition (E:I ratio), we 201	

shift the frequency at which the current-PSDs cross over, which in turn produces 202	

different LFP-PSD slopes (power law exponent) in the intermediate frequency range 203	

(Fig. 1E). To quantify this relationship, we vary E:I ratio from 1:2 to 1:6, and observe that 204	

LFP-PSD slope between 30 to 50 Hz positively correlates with E:I ratio (r = 0.55, p < 205	

0.01; Fig. 1F). The change in slope is restricted to only the low-to-intermediate frequency 206	

ranges (below 100 Hz), as we observe a steady decline in correlation between E:I ratio 207	

and PSD slope when slope is fitted across shifting, 20-Hz wide frequency windows (Fig. 208	

1G). For subsequent slope analyses, we use a 20-Hz window of the lowest possible 209	

frequencies that are above visible oscillatory peaks in the PSD, as a clear drop in 210	

correlation is observed when a narrowband oscillation, such as beta (15-25 Hz), is 211	

present. Additionally, we avoid high frequency regions because action potentials and 212	

firing rate changes have been shown to alter high gamma power at frequencies as low 213	

as 50 Hz (Manning et al., 2009; Miller et al., 2007; Ray and Maunsell, 2011). In 214	
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summary, our forward LFP model suggests that E:I ratio is monotonically related to LFP-215	

PSD slope in a range between 30-70 Hz, when uncorrupted by oscillatory peaks, and 216	

that increasing E:I ratio increases (flattens) PSD slope. 217	

 218	

 219	

Fig. 1. E:I ratio correlates with PSD slope in simulation.  220	

(A) Model schematic: an “LFP population” receives input from two Poisson populations, 221	

one excitatory and one inhibitory. (B) AMPA and GABAA conductance profiles follow a 222	

difference-of-exponentials with different rise and decay time constants. (C) Example time 223	

trace of simulated total synaptic currents (top) and LFP (bottom). (D) PSDs of simulated 224	

signals in (C). Note power law decays in current-PSDs that begin at different 225	

frequencies. (E) Increasing E:I ratio from 1:6 to 1:2 causes a rotation, producing a flatter 226	

PSD. (F) E:I ratio is positively correlated with PSD slope between 30-50 Hz. (G) Positive 227	
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rank correlations between E:I ratio and PSD slope diminish with increasing frequency of 228	

fitting window, up to 100 Hz. 229	

 230	

Depth-varying synapse density in rat CA1 231	

To test the relationship between E:I ratio and PSD slope empirically, we first take 232	

advantage of the fact that excitatory and inhibitory synapse densities vary along the 233	

pyramidal dendrites in the CA1 region of the rat hippocampus (Megías et al., 2001). 234	

Given the results of the above modeling experiment, we ask: can changes in the ratio of 235	

excitatory to inhibitory synapse density be captured by changes in PSD slope, measured 236	

along the depth of CA1? Shank recordings are obtained from CRCNS data portal 237	

(Mizuseki et al., 2009), sampling LFP at evenly spaced electrodes across a depth of 280 238	

um centered (post hoc, see Methods) on the pyramidal cell layer in CA1 (Fig. 2A). PSDs 239	

are computed using data from entire recording sessions of open field foraging (Fig. 2B). 240	

PSD slopes are then fitted between 30-50 Hz to arrive at a slope profile that varied 241	

across depth (Fig. 2C). To compute E:I ratio, we adapt synapse density values from 242	

(Megías et al., 2001) and spatially smooth it to produce data points at equivalent LFP 243	

electrode depths (Fig. 2D).  244	

We find that PSD slope across depth is significantly correlated with the AMPA to 245	

GABAA synapse ratio (Spearman’s ρ = 0.23, p < 10-5), corroborating our a priori 246	

simulation results (Fig. 2E). Interestingly, inhibitory synapse density alone correlates 247	

more strongly with PSD slope (Spearman’s ρ = -0.41, p < 10-5; Fig. 2F). To further 248	

dissect the covariation among the predictor variables, we create multivariate linear 249	

models regressing for slope, using every combination of excitatory density, inhibitory 250	

density, and E:I density ratio (Table 2). We find that each variable alone produces 251	

models that are significantly better than null (constant-only) and with coefficients in the 252	

direction expected (positive for E, E:I ratio; negative for I), where the full model with all 3 253	
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predictors achieves the highest adjusted R2. However, inhibitory density in any 254	

combination produces the largest increase in adjusted R2. Thus, we find that PSD slope 255	

significantly correlates with E:I ratio in the rat CA1, as measured by synapse density, 256	

though the effect is strongly driven by the presence of inhibition. 257	

 258	

Fig. 2. LFP-PSD slope varies with E:I synapse density ratio in rat CA1.  259	

(A) Example shank spanning across CA1 (rad: stratum radiatum; pyr: stratum 260	

pyramidale; or: stratum oriens; adapted from (Mizuseki et al., 2011)). (B) Example PSDs 261	

computed from electrodes along one recording shank. (C) Aggregate slope profile 262	

across depth, centered to the middle of pyramidal layer (0 μm) (horizontal bars denote 263	

standard deviation). (D) Excitatory (AMPA) and inhibitory (GABAA) synapse density 264	

varies across CA1 depth. (E and F) LFP-PSD slope correlates positively with E:I 265	
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synapse density ratio (E) and negatively with GABAA density (F) (vertical bars denote 266	

standard deviation). 267	

 268	

Table 2. Multivariate Linear Model Coefficients and R2 for Slope vs. E, I, and E:I Ratio. 269	

NaNs indicate exclusion of predictor in model. 270	

 271	

 272	

Theta-modulated cycles of excitation & inhibition 273	

If LFP-PSD slope indeed tracks changes in the balance between excitation and 274	

inhibition, it should not only do so statically across space, but dynamically across time as 275	

well. Theta oscillation in the rat hippocampus reflects periodic bouts of excitation and 276	

inhibition (Buzsáki, 2002). Therefore, we posit that PSD slope would be steeper during 277	

the inhibitory phase of theta, and flatter during the excitatory phase. To test this, we use 278	

the same CA1 dataset as above, and divide each LFP recording into temporal segments 279	

of peak and trough based on theta phase (Fig. 3A; see Methods). Fast Fourier 280	

Transforms (FFTs) are computed from these short segments and averaged, showing 281	

distinctive slope differences (Fig. 3B).  282	

We find that, across all channels, PSD slope (30-50 Hz) during theta peaks were 283	

significantly more negative (steeper) than during theta troughs (paired t-test, p < 10-5; 284	

Fig. 3C and 3D). On a single channel basis, we fit linear slopes to each short segment 285	

FFT, and found 844 out of 946 channels with significantly flatter slopes during troughs 286	
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(2-sample t-test, p < 10-5). From this we infer that theta troughs correspond to periods of 287	

excitation, which agrees with the biophysical view that negativity in the hippocampal LFP 288	

is due to depolarization of membrane potential (Buzsáki et al., 2012). Additionally, we 289	

observe that high-frequency (140-230 Hz) power – a surrogate for spiking activity and 290	

ripples in the hippocampus (Schomburg et al., 2012) – is higher during theta troughs 291	

than peaks, further indicating the correspondence between LFP troughs and windows of 292	

excitation (Fig. 3E). Taken together, we find evidence that PSD slope can dynamically 293	

track periods of excitation and inhibition facilitated by theta oscillations in the rat 294	

hippocampus. 295	

 296	

Fig. 3. PSD slope tracks theta-modulated changes in E:I balance.  297	

(A) Schematic of how LFP segments are divided and binned based on theta phase. (B) 298	

Example PSD of a single channel over the entire recording (black, notch filter applied in 299	
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beta range), and averages across all troughs (blue) and peaks (red) only. (C) 300	

Distribution of slope values shifts rightward (more positive) during theta troughs. Inset: 301	

distribution of difference in slope (trough minus peak) lies significantly above 0 (vertical 302	

red line). (D) Individual-channel comparison of slopes during theta troughs vs. peaks, 303	

each channel represented by a pair of connected dots showing nearly universally more 304	

negative slope during peaks compared to troughs (* p < 10-5). (E) Distribution of 305	

difference (trough minus peak) in high frequency activity (HFA, 140-230 Hz) in all 306	

channels lies significantly above 0 (vertical red line), indicating an increase in high 307	

gamma power from peak to trough. 308	

 309	

Propofol-induced increase in GABAA-mediated inhibition 310	

Finally, having shown correlative evidence supporting the hypothesis, we aim to 311	

further test the simulation predictions through causal manipulations. Propofol is a 312	

general anesthetic that positively modulates the effect of GABA at GABAA receptors 313	

(Concas et al., 1991), effectively decreasing the global E:I ratio. Thus, we query another 314	

openly available dataset (http://www.neurotycho.org), in which electrocorticogram 315	

(ECoG) from macaques was recorded throughout sedation, to investigate whether 316	

ECoG-PSD slope reflects a decrease in E:I ratio induced via pharmacological 317	

manipulation (Yanagawa et al., 2013). PSDs are computed for all 128 recording 318	

channels per session, for awake resting and anesthetized conditions (Fig. 4A). We 319	

observe a significant decrease in PSD slope after onset of anesthesia for all 4 recording 320	

sessions (paired t-test, all p < 10-5, Fig. 4B). The slope decrease is strongest in frontal 321	

and temporal electrodes (Fig. 4C), consistent with previous neuroimaging studies 322	

spatially locating propofol’s region of effect (Zhang et al., 2010). Interestingly, electrodes 323	

in the precuneus region show increases in PSD slope during anesthesia instead, 324	

suggesting a gain of activity, perhaps due to its situation as a critical, core node within 325	
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the default mode network (Utevsky et al., 2014). Finally, to calculate temporally precise 326	

demarcations of consciousness state changes, we estimate PSD slope in a time-327	

resolved fashion by fitting over 1-second long sliding FFTs across the entire recording 328	

session. We find that PSD slope dynamically tracks the stability of brain state during 329	

awake resting, followed by a rapid push towards inhibition after injection that is 330	

consistent with propofol’s time of onset (15-30 seconds), as well as the slow rebalancing 331	

during recovery from anesthesia (Fig. 4D). Unexpectedly, we also observe a rapid 332	

increase in slope, back to resting-state values, following the initial gain in inhibition, 333	

suggesting a global re-normalization process. Overall, we demonstrate that ECoG-PSD 334	

slope dynamically tracks propofol-induced gain in inhibition consistently across brain 335	

regions and time. 336	

  337	



Inferring Synaptic E:I Balance from Field Potentials	
	

	 17 

 338	

 339	

Fig. 4. ECoG-PSD slope tracks propofol-induced global inhibition.  340	

(A) Average PSD across all channels during resting (black) and anesthetized (red) show 341	

distinct slope differences beyond 30 Hz. (B) Significant slope decrease is observed 342	

during anesthesia (pair t-test, * p < 10-5). (C) Slope decrease is observed across most of 343	

cortex, most prominently in the frontal and temporal areas. Slope increase is observed 344	

exclusively in the precuneus. (D) Time-resolved estimate of PSD slope tracks, with fine 345	

temporal resolution, changes in brain state from awake to anesthetized (Anes), and as 346	

well as a slow recovery to baseline rest levels (marked by dashed blue line). Grey, 347	

unsmoothed; red, 15s smoothing window applied.  348	
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DISCUSSION 349	

Guided by predictions from our computational modeling results, our analyses of 350	

existing datasets from two mammalian species with different experimental manipulations 351	

and recording equipment demonstrate that information about local E:I ratio can be 352	

robustly captured from the spectral representation of electrophysiological signals. 353	

Specifically, we show that LFP-PSD slope correlates with both anatomical E:I ratio—354	

represented by changes in synaptic density ratio across CA1 layers—and dynamic E:I 355	

ratio as modulated by theta oscillation in the rat hippocampus. In addition, ECoG-PSD 356	

slope tracks the increase of inhibition in non-human primate brains induced by propofol, 357	

across brain regions and time. 358	

Evidence that spiking can be partially extracted from the broadband (2-250 Hz) 359	

or high gamma (>80 Hz) spectral power of meso-/macro-scale neural recordings (LFP, 360	

ECoG) provided an important link between local neuronal activity and the LFP, opening 361	

numerous avenues of research (Manning et al., 2009; Miller et al., 2009; Mukamel et al., 362	

2005). In contrast to the copious literature regarding broadband/high gamma, much of 363	

the work on E:I balance has been limited to intracellular recordings, methods with limited 364	

temporal resolution, multiple single-unit recordings, or optogenetic manipulations. Given 365	

the broad and important role that E:I balance plays in neural computation, information 366	

transfer, and oscillatory and homeostatic mechanisms, the inability to easily measure E:I 367	

parameters at a large scale has hindered basic and clinical research. To this end, we 368	

develop a simple metric that can be applied at different intracranial recording scales, 369	

which can potentially be extended to extracranial EEG recordings, with profound 370	

implications for clinical and basic science research.  371	

 372	

 373	
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Limitations 374	

There are several caveats in this study worth noting. Most notably is the 375	

underlying assumption that LFP and ECoG are solely composed of AMPA and GABAA 376	

synaptic currents. In reality, LFP reflects the integration of all ionic currents, including 377	

action potentials (Schomburg et al., 2012) – which shift the broadband/high gamma 378	

frequencies (Manning et al., 2009; Miller et al., 2009; Mukamel et al., 2005) – and slow 379	

glial currents (Buzsáki et al., 2012). The computational model also makes several 380	

assumptions, such as homogeneous-rate spiking and constant PSC waveforms, as well 381	

as excluding biophysical details like 3D arrangement of the spiking population. These 382	

factors will certainly influence the overall shape of the PSD, although this class of LFP 383	

model we employ was shown to best approximate neuronal networks with 3D cellular 384	

morphology (Mazzoni et al., 2015). Additionally, such models have been used to capture 385	

the aforementioned broadband/high gamma relationship to spiking activity (Miller et al., 386	

2009), a phenomenon that is also reproduced in our model through an overall (and 387	

equivalent) increase in firing rate from both excitatory and inhibitory populations.  388	

Furthermore, although our computational model makes predictions that EI 389	

balance can be captured from the 1/f slope, we emphasize that our model assumes a 390	

linear independent summation of E and I currents that do not account for the fast-391	

coupling or recurrent nature of cortical circuits. This assumption rests on the high-392	

conductance state of cortical circuits over long recording lengths, effectively washing out 393	

stimulus-specific frequency response. So while our simple slope-fitting model captures 394	

significant variance in E:I ratio, the fact that the feedback engagement of E and I makes 395	

these two contributions inextricably linked suggests that more sophisticated models 396	

would perform better when the superposition assumption does not satisfy. In particular, 397	

previous works have shown that the amplitude of the power spectrum depends critically 398	

on this interaction in similar frequency ranges used in our analyses to infer E:I from the 399	
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spectral slope, when considering time-inhomogeneous stimuli (Brunel and Wang, 2003; 400	

Mazzoni et al., 2008). Some methods have been proposed to estimate network 401	

parameters (including E:I ratio) when recurrent E:I interactions are taken into account 402	

(Barbieri et al., 2014). These methods are more complicated than, but complementary 403	

to, the model we propose, and they may be preferable when considering non-stationary, 404	

stimulus-evoked responses. 405	

Finally, because non-neural sources such as the amplifier, reference scheme, 406	

and ambient noise can affect spectral slope, slope-inferred E:I ratio should only be 407	

interpreted in the context of a comparative experimental design in which the relative E:I 408	

ratio can be interrogated in response to experimental manipulations or population 409	

differences, rather than ascribing meaning to the exact value of the slope itself. In 410	

particular, it has been shown that different referencing schemes, such as bipolar vs. 411	

common-average, have profound effects on the measured PSD slope (Shirhatti et al., 412	

2016). In addition, we observe that PSD slope of cortical ECoG is much more negative 413	

than that of CA1 LFP recordings, which, in turn, is lower than slopes produced by our 414	

LFP model, suggesting that anatomical differences and dendritic integration process all 415	

contribute to the measured slope (Lindén et al., 2010; Pettersen et al., 2014). 416	

 417	

Power Law (1/f) Decay in Neural Recordings 418	

Power law exponent (slope) changes of the PSD (“rotation”) have recently been 419	

observed in several empirical studies, linking it to changes in global awake and sleep 420	

states (He et al., 2010), age-related cognitive decline (Voytek and Knight, 2015; Voytek 421	

et al., 2015; Waschke et al., 2017.) and visuomotor task-related activation (Podvalny et 422	

al., 2015). The 1/f power law nature of neural recordings has been interpreted within a 423	

self-organized criticality framework (Bak et al., 1987; He et al., 2010), with general 424	

anesthesia argued to alter the criticality of self-organized brain networks (Alonso et al., 425	
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2014). It has been shown, however, that power law statistics do not imply criticality in 426	

neuronal networks (Touboul and Destexhe, 2010), and the finding that neuronal activity 427	

exhibit power law statistics at all has been questioned (Bédard et al., 2006). 428	

Furthermore, many previous reports ignore or overlook the fact that PSD of neural 429	

recordings are not 1/f at all frequencies and do not have a constant power law exponent 430	

– both requirements in the self-organized criticality framework. Instead, LFP and ECoG 431	

PSDs often have relatively constant spectral power at low frequencies between 1-10 Hz, 432	

as well as different power law exponents at different frequencies. For example, ultra-low 433	

frequency region (<1 Hz) was posited to exhibit 1/f decay due to recurrent network 434	

activity (Chaudhuri et al., 2016), and power law in the very high frequency (>200 Hz) 435	

was shown to be a result of stochastic fluctuations in ion channels (Diba et al., 2004). 436	

 437	

Our model and results reconcile the 1/f and low-frequency plateau observation by 438	

the simple fact that the spectral representation of synaptic currents (Lorentzian) takes on 439	

that shape (Fig. 1D), as others have noted before (Destexhe and Rudolph, 2004). In 440	

fact, previous works have modeled the Lorentzian form as due to the network 441	

propagation time constant of a recurrent excitatory population (Freeman and Zhai, 2009) 442	

and excitatory synaptic time constants coupled with dendritic filtering (Miller et al., 2009). 443	

However, recent evidence suggests that synaptic inhibition also plays a significant role in 444	

shaping the LFP time series (Telenczuk et al., 2017). As such, we infer that the balance 445	

between excitation and inhibition could be extracted from the extracellular field potential, 446	

though not from the polarity of the time series signal itself. Hence, we propose that slope 447	

changes in a particular frequency region (30-70 Hz) correspond to changes in E:I 448	

balance, while making no claims about other frequency regions, and our multivariate 449	

model in the CA1 analysis reveals that both inhibition alone and E:I ratio predict spectral 450	

slope better than excitation alone. Altogether, it follows that different processes may give 451	
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rise to power law phenomenon at different temporal scales, hence different frequency 452	

ranges (Chaudhuri et al., 2016). Our observations here do not negate the criticality 453	

perspective, but reframes it in E:I terms, wherein constant E:I balancing is crucial for 454	

maintaining neuronal excitability at a critical state (Xue et al., 2014). 455	

In summary, our results overturn a long-standing challenge that the relative 456	

contributions of EPSCs and IPSCs to electrophysiological signals cannot be inferred 457	

(Yizhar et al., 2011). We show that this limitation can be overcome using relatively 458	

simple metrics derived from meso- and macro-scale neural recordings, and that it can be 459	

easily applied retrospectively to existing data, opening new domains of inquiry and 460	

allowing for reanalyses within an E:I framework. Furthermore, our results provide 461	

insights into several ongoing research domains, such as possible contributors to the 1/f 462	

power law phenomenon often observed in field potential power spectra. By providing a 463	

new way for decoding the physiological information of the aggregate field potential, we 464	

can query brain states in novel ways, helping close the gap between cellular and 465	

cognitive neuroscience and increasing our ability to relate fundamental brain processes 466	

to behaviour and cognition as a result. 467	
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